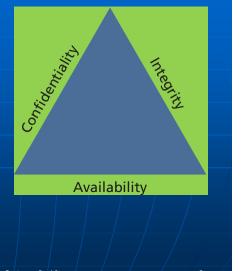
CPET 499/ITC 250 Web Systems Chapter 16 Security

Text Book: * Fundamentals of Web Development, 2015, by Randy Connolly and Ricardo Hoar, published by Pearson Paul I-Hai Lin, Professor <u>http://www.etcs.ipfw.edu/~lin</u>

> CPET 499/ITC 250 Web Systems, Paul I. Lin


Topics

Chapter Objectives

- A wide range of security principles and practices
- Best practices of authentication systems and data storage
- About public key cryptography, SSL, and certificates
- How to proactively protect your site against common attacks

Security Principles

- Information Security
- The CIA Triad (Figure 16.1)
 - Confidentiality The principle of maintaining privacy for the data you are storing, transmitting, etc
 - Integrity The principle of ensuring that data is accurate and correct.
 - Availability The principle of making information available when needed to authorized people.
- Security Standards
 - ISO standards ISO/IEC 27002-27--37
 CPET 499/ITC 250 Web Systems, Paul I.

Risk Assessment and Management

- Risk a measure of how likely an attack is, and how costly the impact of the attack would be if successful
- Security Standards ISO/IEC 27002-270037
- Actors, Impacts, Threats, and Vulnerability
- Actors
 - Internal actors
 - External actors
 - Partner actors

Impacts

- A loss of availability
- A loss of confidentiality
- A loss of integrity

Risk Assessment and Management

- Threats
 - Refers to a particular path that a hacker cloud use to exploit a vulnerability and gain unauthorized access to your system.
 - Also called attack vectors

Categories of Threats (STRIDE)

- Spoofing use someone else's info to access the system
- Tampering modify some data in unauthorized ways
- Repudiation remove all trace of their attack, so they cannot be held accountable for other damage done
- Information disclosure access data they should bot be able to
- Denial of service prevent the real users from accessing the systems
- Elevation of privilege

CPET 499/ITC 250 Web Systems, Paul I. Lin

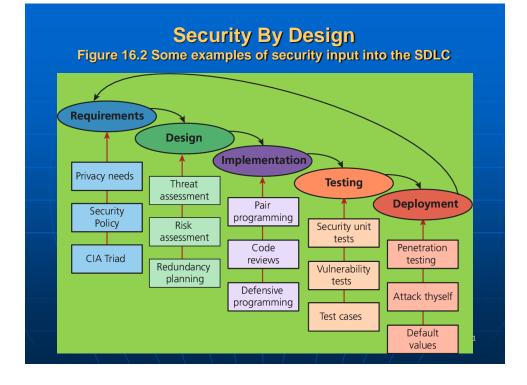
Risk Assessment and Management Vulnerability – the security holes in your system The top 10 classes of vulnerability from the Open Web Application Security Project (2013): https://www.owasp.org/index.php/Top_10_2013-**Top_10** A1. Injection · A2. Broken authentication and session management A3. Cross-site scripting A4. Insecure direct object reference A5. Security misconfiguration • A6. Sensitive data exposure • A7. Missing function level access control A8. Cross-site request forgery (CSRF) A9. Using components with unknown vulnerabilities A10. Un-validated redirects and forwards CPET 499/ITC 250 Web Systems, Paul I.

Assessing Risk

- NIST Risk Management Guide for Information Technology Systems, <u>http://csrc.nist.gov/publications/nistpubs/800-</u> <u>30/sp800-30.pdf</u>
- Table 16.1 Examples an Impact/Probability Risk Assessment Table Using 16 as the Threshold

		Impact(n ²)					
P r o		Very Low	Low	Medium	High	Very High	
b a	Very High	5	10	20	40	80	
b i	High	4	8	16	32	64	
	Medium	3	6	12	24	48	
i t	Low	2	4	8	16	32	
У\	Very low	1	2	4	8	16	
	$\langle \ \rangle \langle \ \rangle$	CPET 499)/ITC 250 Web Sys Lin	tems, Paul I.		7	

Assessing Risk


Table 16.1 Examples an Impact/Probability Risk Assessment Table Using 16 as the Threshold

Impact (n ²)						
	Very low	Low	Medium	High	Very high	
Very high	5	10	20	40	80	
,≩ ^{Hlgh}	4	8	16	32	64	
Probability Meqimm Now	3	6	12	24	48	
og Low	2	4	8	16	32	
Very low	1	2	4	8	16	
		CPET 499/ITC 250	Web Systems, Paul I Lin		8	

Business Continuity & Plans

- Admin Password Management
- Backups and Redundancy
- Geographic Redundancy
- Storage Mock Events
- Auditing

Security By Design

- Code Reviews
 - · Peer-reviewed before committing it to the repository
 - · Company coding style and practice
 - Informal and formal review process
- Unit Testing
 - Code Modules
 - Class
 - Security holes

Pair Programming

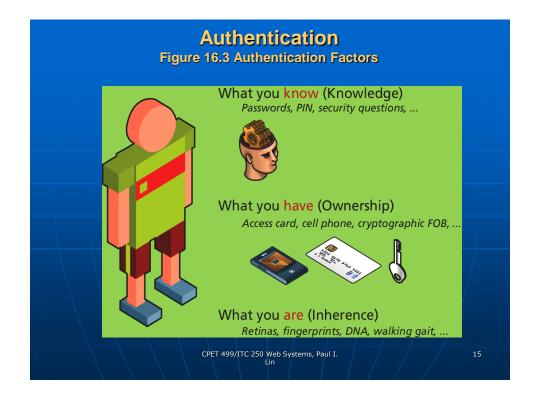
- Two programmers working together
- Security Testing
 - Testing the system against scenarios that attempt to break the final system

- Penetration testing
- Secure by Default

Social Engineering

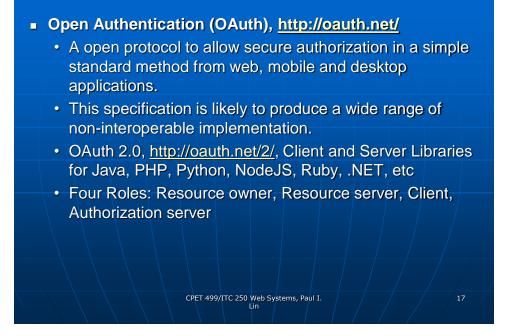
- Social engineering
 - A broad term given to describe the manipulation of attitudes and behaviors of a populace, often through government or industrial propaganda and/or coercion.
 - A human part of information security that increases the effectiveness of an attack.
 - Social Engineering (Security), <u>https://en.wikipedia.org/wiki/Social_engineering_(security)</u>
 - <u>http://www.social-engineer.org/</u>
- Two popular techniques
 - Phishing scams
 - Security theater

CPET 499/ITC 250 Web Systems, Paul I. Lin

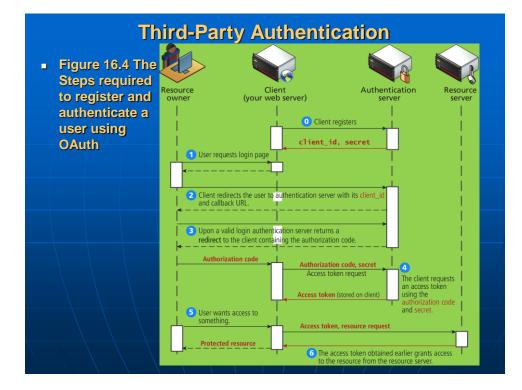

Social Engineering

- Other References
 - Social Engineering (Security), <u>https://en.wikipedia.org/wiki/Social_engineering_(sec_urity)</u>
 - <u>http://www.social-engineer.org/</u>
- Top 5 Social Engineering Exploit Techniques, by James Heary, Network World,

http://www.pcworld.com/article/182180/top_5_social_en gineering_exploit_techniques.html


l in

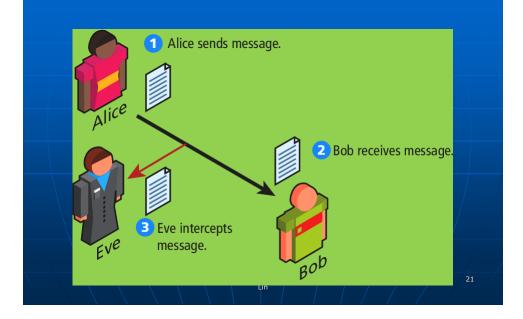
- 1) Familiarity exploit
- 2) Creating a hostile situation
- 3) Gathering and using information
- 4) Get a job there
- 5) Reading body language CPET 499/ITC 250 Web Systems, Paul I.


Authentication
Authentication Factors
 Knowledge factors: password, PIN, challenge questions
 Ownership factors: driver license, passport, cell phone, key to a lock
 Inherence factors: biometric data – fingerprints, retinal patterns, DNA sequence
 Single-Factor Authentication
Password/ Magnetized key badge
Multi-Factor Authentication
ATM Machine: Access card and PIN
Third-Party Authentication
Open Authentication (OAuth) CPET 499/ITC 250 Web Systems, Paul I.

Third Party Authentication

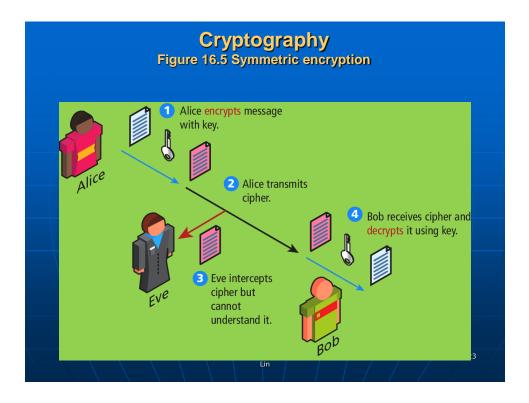
Third Party Authentication

- Open Authentication (OAuth), <u>http://oauth.net/</u>
 - Four Roles
 - Resource owner normally the end user who can gain access to the resource
 - Resource server host the resources and can process request using access tokens
 - Client the application making requests on behalf of the resource owner
 - Authorization server issues tokens to the client upon successful authentication of the resource owner. (often this is the same as the resource server)

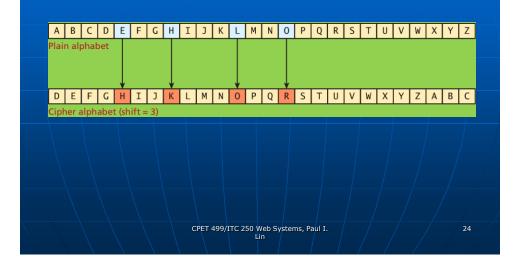


Authorization

Some examples in web development where proper authorization increases security


- Using a separate database user for read/write privileges on a database
- Providing each user an account where they can access their own file securely
- Setting proper Read/Write/Execute permissions
- Ensuring Apache is not running as the root account (an account that can access everything)

Cryptography Figure 16.4 Message Intercepting


Cryptography

- Cipher a message that is scrambled so that it cannot easily be read, unless one has some secrete key
- Key Can be a "number", "phrase", "page from a book"
- Encryption
- Decryption

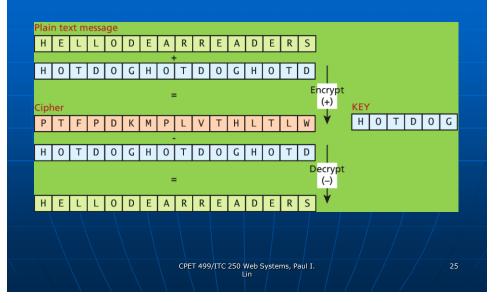
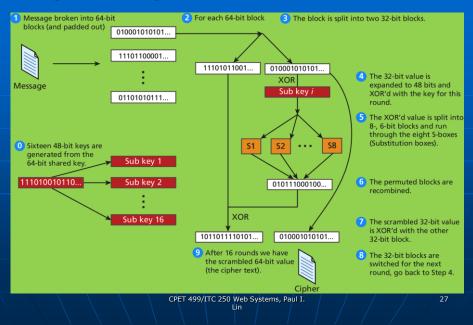

Substitution Ciphers – Cesar Cipher

 Figure 16.7 Caser Cipher for shift value of 3 (Hello => KHOOR)

Substitution Ciphers – Vigenere


Figure 16.7 Vigenere cipher example with key "hotdog"

Substitution Ciphers

- One-time Pad Cipher
- Modern Block Ciphers
 - · Scrambled 64 or 128 bits block as a time
 - Data Encryption Standard (DES)
 - Advanced Encryption Standard (AES)


CPET 499/ITC 250 Web Systems, Paul I.

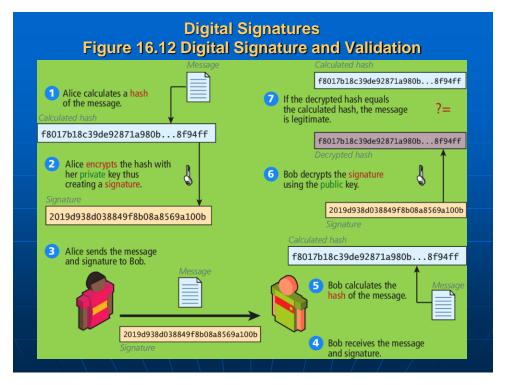


Figure 16.10 High-level illustration of the EDF cipher

Public Key Cryptography

- Public key cryptography (asymmetric cryptography)
- Using two distinct keys:
 - A public key widely distributed
 - A private key
- Diffie-Hellman Key Exchange algorithm
- RSA (Ron Rivest, Adi Shamir and Leonard Adeleman) algorithm underpinning the HTTPs protocol

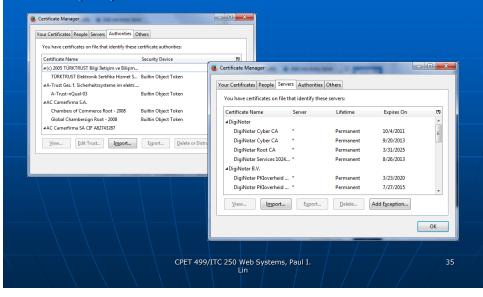
- HTTPs is the HTTP running on top of the Transport Layer Security (TLS)
- TLS v1.0 an improvement on Secure Socket Layer 3.0 (SSL)
- For compatibility reason, we refer it as HTTP running on TLS/SSL

- Secure Handshakes
- Certificates and Authorities
 - Self-signed Certificates

Figure 16.14 SSL Secure Handshake	
Client I HELLO (cipher list, SSL version, etc.)	
2 HELLO (cipher selection)	
3 Public key	
4 Certificate	
 (5) Client authenticates the certificate or gets the user to accept it. (6) Premaster secret (encoded with server key) 	
Symmetric key computed	
8 Client done →	
 Server done Secure transmission completed 	
CPET 499/IIC 250 Web Systems, Paul I. Lin	32

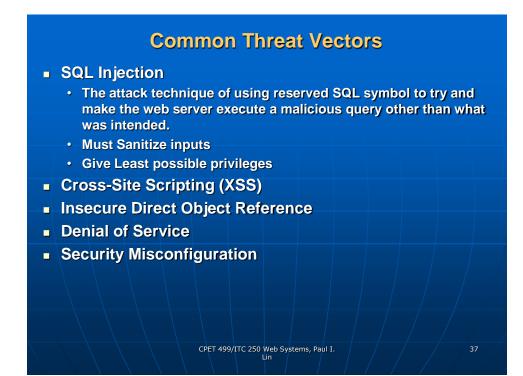
Certificates and Authorities

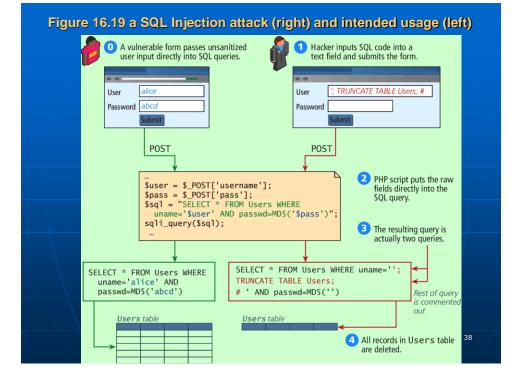
Figure 16.15 The content of a self-signed certificate for funwebdev.com (X.509 certificate Example)


Certificates and Authorities

- Certificate X.509 certificate which contains many details including
 - Algorithm used
 - The domain it was issued for
 - Some public key information
- X.509 Client Certificate, <u>https://help.sap.com/saphelp_nw73/helpdata/en/43/dc1f</u> a58048070ee1000000a422035/content.htm
- X.509 Certificate Tool, <u>https://msdn.microsoft.com/en-us/library/aa529278.aspx</u>
- X.509 Certificates and Certificate Revocation Lists (CRLs), <u>http://docs.oracle.com/javase/7/docs/technotes/guides/s</u> ecurity/cert3.html

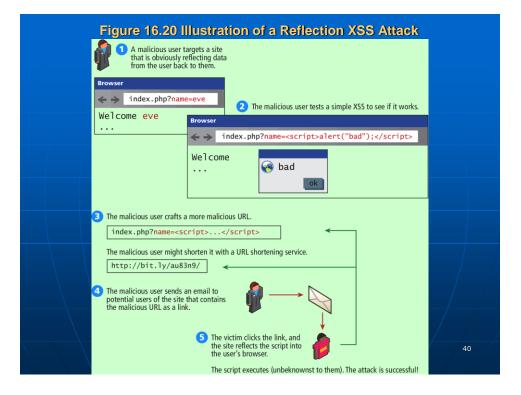
CPET 499/ITC 250 Web Systems, Paul I.

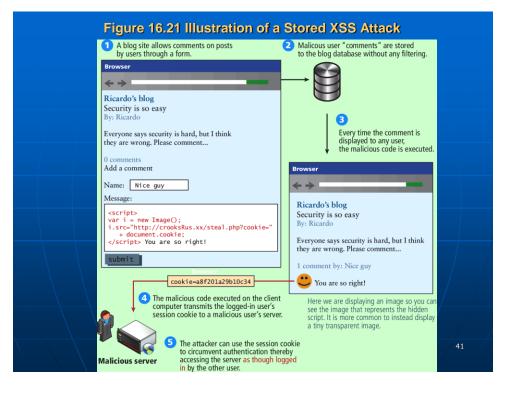

Firefox Certificate Management Interface


Options => Certificates => View Certificates (Some examples)

Security Best Practices

- Data Storage
 - Secure Hash
 - · Salting the Hash
- Monitor Your Systems
 - System Monitors
 - Access Monitors
 - Automate Intrusion Blocking
- Audit and Attack Thyself





Cross-Site Scripting

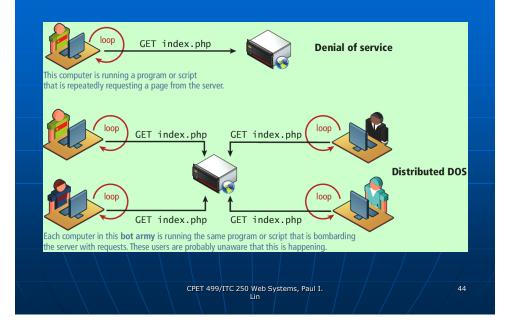
- Cross-Site Scripting (XSS) refers to a type of attack in which a malicious script (JavaScript, VBScript, or Action Script, etc) is embedded into an otherwise trustworthy website.
- Two main categories of XSS
 - Reflected XSS (Non-persistent XSS)
 - Are attacks that send malicious content to the sever, so that in the server response, the malicious content is embedded
 - Store XSS (Persistent XSS)
 - More dangerous which may impacts all users visit the site

Common Threat Vectors

- Insecure Direct Object Reference
 - Expose some internal value or key of the application to the user
 - Then the attackers can then manipulate the internal keys to gain access to things that should not have access to
 - Examples:
 - An archive of the site's PHP code or passwords can be potentially accessed or downloaded
 - A database key in the URLs that are visible to users
 - Storing files on the server
- Denial of Service
- Security Misconfiguration
 CPET 499/ITC 250 Web Systems, Paul I.

Denial of Services

Denial of Service attacks (DoS)


- are attacks that aim to overload a server with illegitimate requests in order to prevent the site from responding to the legitimate ones,
- Methods of prevention
 - Blocking the IP address in the firewall or the Apache server

Distributed DoS Attack (DDoS)

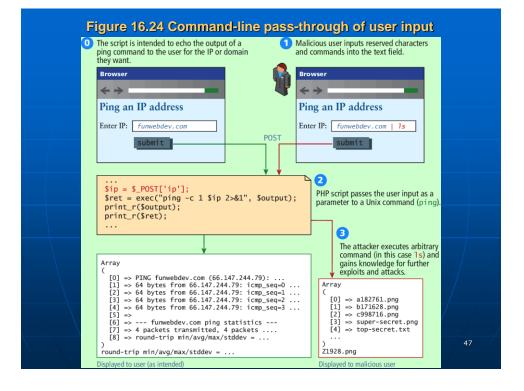
- · Attacks are coming from multiple machines
- Recent DDoS attack on Spamhaus servers (generates 300 Gbps worth of requests), <u>http://www.spamhaus.org/news/article/695/answers-about-recent-ddos-attack-on-spamhaus</u>

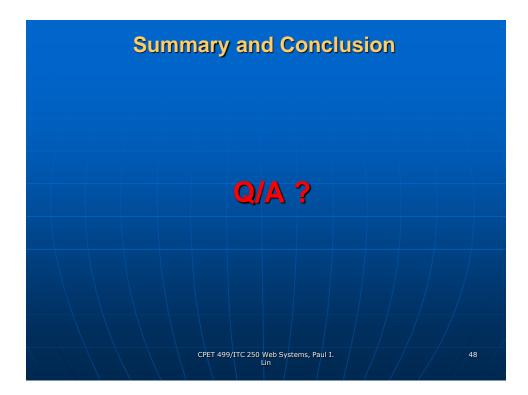
CPET 499/ITC 250 Web Systems, Paul I. Lin

Figure 16.22 DoS and DDoS

Security Misconfiguration

- Out-of-Date Software
- Open Mail Relays
 - Refers to any email server that allows someone to route email through without authentication


More Input Attacks


- Refers to the potential vulnerability that occurs when the users through their HTT requests, transmit a variety of strings and data that are directly used by the server without sanitation.
- Virtual Open Mail Relay Figure 14.23
 - HTML web email send to any email addresses
- Arbitrary program execution Figure 16.24

CPET 499/ITC 250 Web Systems, Paul I. Lin

Figure 16.23 Virtual open relay exploit Malicious user sees that you are transmitting email addresses in HTML and creates a spam script to mail a list of addresses. A contact form transmits the email of the receiver within the HTML in the to: field. Browser Aphrodite@abc.xyz $\leftrightarrow \rightarrow$ Apollo@abc.xyz Contact Us Ares@abc.xyz Artemis@abc.xyz From: youremail@example.com Athena@abc.xyz To: Select one ▼ Zeus@abc.xyz rconnolly@mtroyal.ca rhoar@mtroyal.ca loop Query string para Message: Type here . sender=fakename@realbank.com receiver=Aphrodite@abc.xyz message=[spam (or worse)] submit POST Query string parameters sender=some-person@where-ever.com POST receiver=rhoar@mtroval.ca 2 PHP script passes the query string input directly to the PHP mail() function. message=[Hello I love your book ...] \$from = \$_POST['sender']; \$to = \$_POST['necence'];
\$msg = \$_POST['message'];
\$header = "From: " . \$from . "\r\n"; 3 The form thus acts as an \$header = "From: " . \$from . "\r\n";
mail(\$to, "Form message",\$msg,header); open relay and lets the malicious user send many messages. Spam mail from malicious use Mail from A odite@abc

ilguro 46.22 Virtual opon rolav ovaloit

