
To: P. Lin, G. Steffen

From: Jeremiah Bauer

Date: 2/24/2014

Re: Web Based Point of Sale System Design Project Report

Report Outline

 Report Summary

 Problems and Corrections

 Status of the System

 Timeline for Completion

 Programming and Development Environment

 Hardware Information

 Project Costs

 Supporting Information

o Top Level System Diagram

o Cashier Use Case

o Object Controller UML Diagram

o Object Model UML Diagram

o Find Item Operation Sequence

o Complete Order Sequence Diagram

o Database Schema Diagram

o Sales Page UI Design

o Completed Item Maintenance Page Example

o Configuration Page Example

o Gantt Chart

Report Summary

In this report you will find problems and corrections, status of the system, a description of the

programming and development environment, hardware information, and project costs. The design and

construction of the system is moving along smoothly if not a little behind schedule due to being

employed full time. I have every confidence that I will be able to finish the system by the presentation

deadline.

Problems and Corrections

There has only been one major issue encountered during development. I am able to generate barcodes

for items both inside and outside of the application. However, I am unable to get them to show up in

the web browser, this is simply a case of me not reading and comprehending the documentation behind

sending binary data to the browser with Ruby on Rails.

After discussing with Dan’s Pies it was determined that users do not need to log in. Therefore the

“Create User Login Page” and “Create User Administration Pages” tasks where dropped. This simplified

the database schema and simplified the “Sales Page”. This functionality could be added at a later date if

requested.

Status of the System

The system is currently under active development. The development is progressing slightly behind

schedule due to my full time employment and other course load as can be seen in the Gantt Chart in

Table 7. I fully expect to catch up on development and be ahead of schedule by the end of spring break.

The objects for the ORM model have been designed and can be seen in Figure 4. These objects allow

the application to store data in the PostgreSQL database schema seen in Figure 7. The controller objects

have also been created which provide URL access to the ORM objects. These objects can be seen in

Figure 3.

The item maintenance page has been completed as seen in Figure 9. The only functionality missing is

displaying the barcode to the user when the “Show Barcode” link is clicked, currently when this link is

clicked an exception is thrown and displayed to the user. This exception is due to not understanding

completely how to pass dynamically generated binary data to the web browser with Ruby on Rails. This

functionality will be completed with a few more hours of development time.

The sales screen has been designed and is described in Figure 8 and the sequence of operations required

to find an item and add it to the order has been developed. This sequence is described in Figure 5.

After all the items have been added to the order the user will click the “Complete Order” button and the

operations described in Figure 6 will be executed. This page will be the next page to be finished.

The store configuration page has been completed and can be viewed in Figure 10 below. This screen

allows the business to change values that will be used throughout the application.

Programming and Development Environment

The programming language that is being used for server side development is Ruby. Ruby is an

interpreted, dynamically typed, scripting language that combines the best from Python and Perl. A web

framework called Ruby on Rails is being used to speed up development. The database being used to

store information is called PostgreSQL an open source relational database. The webpages generated by

Ruby on Rails will use HTML, CSS, and JavaScript. The webserver that will be used for deployment is the

Apache Webserver with the Phusion Passenger (mod_rails) plugin.

The development environment is hosted on a CentOS 6.5 virtual machine. CentOS is a Linux distribution

based on Red Hat Enterprise Linux. The editor being used is vim with the rails plugin. All software is

open source and free to distribute and use.

Table 1 Summary of Software and Versions

Software Name Major Version Purpose

Vim 7.2 Text Editor

Rails.vim 5.0 Vim rails integration

Ruby 2.0 Server Side Scripting

Ruby on Rails 4.0 Server Side Web Framework

PostgreSQL Database Server 9.3 Relational Database Server

Apache HTTPD Webserver 2.4 Web server

Phusion Passenger (mod_rails) 4.0 HTTPD ruby plugin

CentOS 6.5 Host OS

Ruby gems are third party software that provide extra functionality to the Ruby programming language.

Below is a list of these gems that are required for the application to function. All of these gems are

licensed as open source software and are free to distribute.

Table 2 Summary of Gems and Versions

Gem Name Version Purpose

Rails 4.0.2 Web Application Framework

sass-rails 4.0.1 Style sheet generator

uglifier 1.3.0 JavaScript compressor

coffee-rails 4.0.0 Coffeescript compiler
(JavaScript minilanguage)

jquery-rails 3.0.4 Provides the jQuery Javascript
framework to the application

turbolinks 2.1.0 Web link library

jbuilder 1.5.3 JSON parser

therubyracer 0.12.0 Server side JavaScript engine

Barby 0.5.1 Barcode generator

chunky_png 1.30 PNG graphic library

sdoc 0.3.20 Generates documentation
from rdoc comments

Pg 0.17.1 Provides connectivity to
PostgreSQL

Postgres 0.8.1 Provides connectivity to
PostreSQL

Hardware Information

The client PC being used is a net-top computer that is powered by an Intel Atom D510 processor and 2

gigabytes of RAM. This is enough processing power to host the barcode scanner and receipt printer.

The server is powered by an Intel Core 2 Duo processor and 8 gigabytes of RAM. The barcode scanner is

a generic brand USB barcode scanner purchased online. The receipt printer is a USB Epson ReadyPrint

T20 Direct Thermal Printer. This printer was chosen because a Linux driver is available from Epson.

Table 3 Hardware Summary

Hardware Name Function

Intel Atom D510 Net-top Client PC

Intel Core 2 Duo Server Webserver and Database
Server

Generic USB Barcode Scanner Scan product barcodes

Epson ReadyPrint T20 Direct
Thermal Printer

Print receipts

Project Costs

Table 4 Project Material Costs

Material Costs

Description Cost

Receipt Printer $144.98

Total $144.98

All hardware has been ordered and will be received by 2/28/2014.

Table 6 Labor Costs To Date

Labor Costs

Resource Description

Estimated

Hours

Actual

Hours

Jeremiah Bauer Determine Final Requirements 5 2

Jeremiah Bauer Document System Architecture 5 2

Jeremiah Bauer Document Unit Tests 5 2

Jeremiah Bauer Model Database 5 6

Jeremiah Bauer ORM Development 5 2

Jeremiah Bauer Design User Interface Theme 3 3

Jeremiah Bauer Main Sales Page Development 20 1

Jeremiah Bauer Product Administration Page Development 5 3

Jeremiah Bauer Barcode Generation Development 5 3

Jeremiah Bauer Barcode Reading Development 5 1

Jeremiah Bauer Receipt Printing Development 3

Jeremiah Bauer Final Code Development 2

Jeremiah Bauer Unit Test Development 10

Jeremiah Bauer Setup Test System 10

Jeremiah Bauer Deploy Code to Test Server 2

Jeremiah Bauer Preliminary Functional Testing 8

Jeremiah Bauer Write Verification Testing Plans 15

Jeremiah Bauer Verification Testing 5

Jeremiah Bauer Install Required Server Software At Dan's Pies 5

Jeremiah Bauer Setup New Users on System 5

Jeremiah Bauer Train Users On New System 10

Jeremiah Bauer Construct Power Point 5

Jeremiah Bauer Build and Insert Diagrams 1

Jeremiah Bauer Review Presentation Requirements 1

Jeremiah Bauer Make Final Power Point 1

Jeremiah Bauer Write rough draft 10

Jeremiah Bauer Proof-read and edit rough draft 1

Jeremiah Bauer Write final report 1

Dan Bauer User Acceptance Testing 10

Total: 168

25

Supporting Information

The information below is to further clarify the design and behavior of the system.

Figure 1. Top Level System Diagram of a LAN-based Point of Sales System

Figure 2. Cashier Use Case

Switch

Client PC
IP Address: DHCP Assigned

USB Receipt Printer USB Barcode
Scanner

PostgreSQL DB Server – Unix Socket
Apache Webserver- TCP Port 80

IP Address: 192.168.1.99

 Point of Sale Top Level Diagram

Cashier

Scans Item

Creates Order

Completes Order

Prints Receipt

Creates Item

Creates Item Barcode

Figure 3. Object Controller UML Diagram

ApplicationController

ItemsController

params

methods:
public:
index()
show()
new()
edit()
create()
update()
destroy()
retrieveBarcode()
private:
set_item()
item_params()

ActionController::Base

Rails Base Class
Documentation:
http://api.rubyonrails.org/classes/
ActionController/Base.html

PosConfigsController

params

methods:
public:
index()
show()
new()
edit()
create()
update()
destroy()
private:
set_pos_config()
pos_config_params()

Figure 4. Object Model UML Diagram

Figure 5. Find_Item() Operation Sequence

Item

Attribute:
id::integer
name::varchar
description::varchar
price::numeric
taxRate::numeric
upcCode::integer

Methods:
barCode()

ActiveRecord::Base

Rails Base Class
Documentation:
http://api.rubyonrails.org/classes/
ActiveRecord/Base.html

PosConfig

Atrribute:
id::integer
Name::varchar
Value::varchar

Order

Attribute:
id::integer
orderDate::date

OrderDetail

id::integer
orderId::integer
name::varchar
description::varchar
price::numeric
taxRate::numeric
upcCode::integer

USB Scanner Host PC Webserver DB Server

Find Item Sequence

Item ID

/items/<id>/details

findItemById()

<item result set

Item Details

Figure 6. Complete Order Sequence

Figure 7. Database Schema

Complete Order Sequence

Host PC Webserver DB Server

User presses "Complete Order"
Sends payment method and

order contents in json structure
getNewOrderID()

return orderID

Inserts contents of
Order using new OrderID

returns Success or Failure

Returns success or failure
prints receipt if success

Item Order

OrderDetail

PosConfig

PaymentType

item_id: serialPK

name: character varying

description: character
varying

price: numeric

tax rate: numeric

upcCode: integer

order_id: serialPK

order_date: timestamp
with timezone default
now()

order_detail_idPK

FK: order_id: integer

item_description:
character varying

item_name: character
varying

item_price: character
varying

item_quantity: character
varying

item_tax_rate: numeric

pos_config_id: serialPK

name: character varying

value: character varying

payment_type_idPK

name: character varying

FK: payment_type_id:
integer

Figure 8 Sales Page UI Design

Figure 9 Completed Item Maintenance Page

Figure 10 Configuration Page

Sales Page

Complete Sale

Item Search Box SubTotal: $33.00

Tax: 2.32

Order Total: 35.32

Amount Tendered:35.31
Change Due: 0.00

Item Description Quantity Item TotalUnit Price Tax Rate

Cash

Cherry Pie 1 8.03$7.50 7.0%

Apple Pie 3 27.29$8.50 7.0%

Table 7 Gantt Chart

