CPET 499/ITC 250 Web Systems

Chapter 16
Managing State

Text Book:

* Fundamentals of Web Development, 2nd, by Randy Connolly and
Ricardo Hoar, published by Pearson

Purdue University Fort Wayne

Paul I-Hai Lin
Professor of Electrical and Computer Engineering Technology

http://www.etcs.pfw.edu/~lin

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Topics

Why state is a problem in web application development
What cookies are and how to use them

What HTML5 web storage is and how to use it

What session state is and what are its typical uses and
limitation

What server cache is and why it is important in real-
world web sites.

CPET 499/1TC 250 Web Systems, Paul I.
Lin

The Problem of State in Web Applications
Figure 16.1 Desktop applications vs. web application
= All applications
need to
Process user
inputs
Output
information, and
Read/write from
databases or other
storage media
A web app
consists of a
series of
disconnected
HTTP request to a
web server

Figure 16.2 What the web server sees

= The web server sees only
request

» The HTTP protocol does
not without programming
intervention, distinguish

two requests «n. it T Thes semrver not el any different thon -

CPET 499/1TC 250 Web Systems, P
Lin

Figure 16.3 What the user wants the server to see

= User wants the web
server to connect the
request together: A
web shopping cart
example

HTTP request-
response interaction
constrains
information
passing/using

We can pass info
using: Query strings,
Cookies

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Passing Information via Query Strings
Fiaure 16.4 Recap of

Browser

= Aquery aret

string within
the URL [

(GET) Nationality:

A query
string within | 0
HTTP 1

header I <form method="GET" action="process.php"> I—)

(POST) |GET process.php?artist=Ficassodyear=1906&nation=5pain http/1.1

Queary string

I <form method="POST" action="process.php"= l—b

POST process.php HTTR/1.1
Date: Sun, 20 May 2012 23:59:59 CMT

Host: www.mysite.com HIT#
User-Agent: Mozilla/4.0 Izl
Content-Length: 47

Content-Type: application/x-www-form-urlencoded

artist-Picassofyear-1906&nation-Spain

Passing Information via the URL Path
= Drawbacks

* The URL path and query string can be long and
complicated

= For search engine application:
» A prefer method
» SEO (Search Engine Optimization)

* Dynamic URLs (query string parameters) — an essential
part of web development

* URL Rewriting — a process of rewrite the dynamic URL
into static one (and vice versa)

» Figure 16.5 URLs within a search engine result page

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Figure 16.5 URLs with a search engine result page
ntop s/ feeon . 1st-art- gallery. comfRaphael/La- Bonna-YeTata-1516. hoal <

hitp:/fwer. paintingall . comfraphael sanzic woman with a weil 1a donna velata.himl

3
hcop: /fesed. arcsheaven . con/ raphas] - Ta-donna—velara. roal
-

Passing Information via the URL Path

Figure 16.5 URLs within a search engine result page

e Top four commerce-related results for the search term
“reproductions Raphael portrait la donna velata”

e The top three: do not use query string parameters, use
relevant info within the folder path or file name

» File name extension is rewritten to make URL friendlier
Rewrite URL
 www.somedomain.com/DisplayArtist.php?artist=16
 www.somedomain.com/artist/16.php

More SEO friendly

* www.somedomain.com/artist/Mary-Cassatt

URL Rewriting in Apache and Linux

* mod_rewrite module with .htaccess file

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Cookies

s HTTP Cookies:
A client-side approach for persisting state information

* Intended to be a long-term state mechanism used as a
way of maintaining continuity over-time in a web
application

They provide web servers with user-related information
that can be stored on the user's computer and be
managed by the user’s browser

Also for keep tracking of whether a user has logged into
a site

Storage space limitation — 4 k for a domain
IE 6 limited a domain to 20 cookies
Users can refuse to accept cookies

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Cookies
= Types of Cookies

» Session Cookie —no expiry state, will be deleted at
the end of the user browsing session

» Persistent Cookies — have expiry date specified

= Third-party tracking cookies — source of concern for
privacy advocates

= Writing and Reading Cookies - PHP

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Figure 16.6 Cookies at work

al.hnlhihtm
o page in dowssin
SOmES 1 TE . Com.

GET SomePage.php http/l.1
Host: www.somesite.com

HTTR/1.1 200 OK

Date: Sun, 20 May 2012 23:59:59 CMT

Host: www.somesite.com

Set-Cookie: name-value

Set-Cookie: nameZ-value?;Expires—Sun,27 May 2012 ...
Content-Type: text/html

<html>_ .

ﬂmﬂeduhﬂhmm
HITP request for thet domain.

GEY AnotherPage.php hrep/i.1

Host: waw.somesite.com

Cookie: mame=value; nameZ=value2

Cookies

= Writing Cookies — PHP

<?php

//listing 16.1 Writing a cookie

// add 1 day to the current time for expiry time
$expiryTime = time()+60*60*24;

// create a persistent cookie

$name = "Username";

$value = "Ricardo";

setcookie($name, $value, $expiryTime);

7>

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Cookies

= Reading Cookies — PHP
<?php

//listing 16.2 Reading a cookie <-visit Listing13.01.php
to set the cookie.

if(lisset($_COOKIE['Username'])) {
//no valid cookie found

}

else {
echo "The username retrieved from the cookie is:";
echo $ COOKIE['Username'];

7>

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Serialization

Serialization is the process of taking a complicated
object and reducing it down to zeros and ones for
either storage or transmission.

PHP objects
* serialize() — reduce an object down to a binary string

* unserialize() — reconstitute the binary string back into
an object

Listing 16.3 the Serializable interface

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Serialization

= Listing 16.3 the Serializable interface
<?php
/llisting 13.3 The Serializable interface
interface Serializable {

[* Methods */

public function serialize();

public function unserialize($serialized);

}

>

= serialize($picasso);
= $picassoClone = unserialize($data);

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Figure 16.7 Serialization and deserialization

$picasso : Artist §chicago : Sculpture

firstName: Pablo

TastName: Picasso
birthDate: October 25, 1881
birthCity: Malaga
deathDate: April 8, 1973 (=
works : Array(<Art>)

name: Chicago
createdDate : 1967
size @ array(15.2)
weight : 162 touns

3 rni : Paintin
- name: Guerpica
- createdDate : 1937
serialize($pi casse) - size : array(7.8,3.5)
I.IISGF"I'HZ!O C:6:-"Artist":764:{a:7:{s:&:"earldiest";5:12:"0ct 25,
1881";s5:5:"MrstName" ;5:5:"Pablo”;s:4:"las IName" ;5:7:"Picasso";s5:5
:"birthDate";s:12:"0ct 25, 1881";s:5:"deathDate";s:11:"Ap1 8,

Y

1973";s:5:"birthCity";s:6:"Malaga";s5:5: "works";a:3:{i:0;C:8:"Paint
ing":134:{a:2:{s:4:"size";a:2:{i:0;d:7.7999999999999998;7 :1;d:3.5;
}s:7:"artData";s:54:"a:2: {s:4:"date";5:4:"1937";5:4:"name";5:8:"Cu
ernica”;}";31:1;C:9:"Sculpture” :186:{a:2:{5:6:"weight";s5:8:"162
tons";s:12:"paintingData”;s:123:"a:2:{s:4:"size";a:1:{1:0;d:15.119
999999999999;}s:7: "artData";5:53:"a:2: {s:4: "date" ;5:4:"1967" ;5:4:"
name";s:7:"Chicago”;}";}":3}i:2;:C:5: "Movie":175:{a:2: {s:5: "media";
5:8:"file.avi";s:12:"paintingData";s:113:"a:2: [5:4:"5ize";a:2: [1:0
11:3239:159 148 ks 7 "artData® ;s:50: "a:2: {s:4: "date";5:4: "1968" ;5:4
t"name";s:4:"test" ;1" 1 1

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Listing 16.4 Art class modified to implement the
Serializable interface
<?php
class Artist implements Serializable {
/[some parts borrowed from earlier chapters.
const EARLIEST_DATE = 'January 1, 1200
private static $artistCount = 0O;
private $firstName;
private $lastName;
private $birthDate;
private $deathDate;
private $birthCity;
private $artworks;

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Listing 16.4 Art class modified to implement the
Serializable interface

/I Implement the Serializable interface methods
public function serialize() {
I/ use the built-in PHP serialize function
return serialize(
array("earliest” =>self::$earliestDate,

"first" => $this->firstName,
"last" => $this->lastName,
"bdate” => $this->birthDate,
"ddate” => $this->deathDate,
"bcity" => $this->birthCity,
"works" => $this->artworks

)

), CPET 499/1TC 250 Web Systems, Paul I.
Lin

Listing 16.4 Art class modified to implement the
Serializable interface

public function unserialize($data) {
/I use the built-in PHP unserialize function
$data = unserialize($data);
self::$earliestDate = $data['earliest’];
$this->firstName = $data['first’];
$this->lastName = $data['lastT;
$this->birthDate = $data['bdate’];
$this->deathDate = $data['ddate’];
$this->birthCity = $data['bcity'];
$this->artworks = $data['works'];

}7> CPET 499/ITC 250 Web Systems, Paul I.
Lin

10

Session State

Session state — a server-based state mechanism that let
web application store and retrieve objects for each unique
session

Store serialized file on the server => deserialized and
loaded into memory as needed for each request

In PHP

e Superglobal associative arrays

+ $ GET,$ POST, $ COOKIES

* $ SESSION variable — needs additional steps to use

See Figure 16.8 Session State in next slide

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Figure 16.8 Session State

11

Session State

Listing 16.5 Accessing session state

<?php
/llisting 16.5 Accessing session state

if (isset() {
I/l User is logged in

}

else {
// No one is logged in (guest)

}

?>

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Session State
= Listing 16.6 Checking session existence

<?php
/llisting 16.6 Checking session existence
include_once("ShoppingCart.class.php"); //file not provided.

/[always check for existence of session object before
accessing it

if (lisset() A
//session variables can be strings, arrays, or objects, but
/I smaller is better

= new ShoppingCart();

CPET 499/1TC 250 Web Systems, Paul I.
Lin

How Does Session State Work?
HTTP is stateless
Some type of user/session identification system is
needed
In PHP, see Figure 16-9
* A session cookies
» Server < a unique 32-byte string <> User
Listing 16.7 Configuration in php.ini to use a shared

location for sessions

;listing 16.7 Configuration in php.ini to use a shared location for
sessions

[Session]

; Handler used to store/retrieve data.
session.save_handler = memcache
session.save_path ="tcp://sessionServer:11211"

CPET 499/1TC 250 Web Systems, Paul I.
Lin

How Does Session State Work?

= Figure 16.9 Session IDs

13

Session Storage and Configuration

s Figure 16.10 Applications and server memory

e Store session info, pages being executed, and caching info

Other Linux
processes

Session Storage and Configuration
= Figure 16.11 Web Farm

N4,
Hé,..

e,
%

CPET 499/1TC 250 Web Systems, Paul I.

He..

SicW
=

N4,
W

e
%

Apache (PHP) threads

Lin

14

Session Storage and Configuration

= Figure 16.12 Shared session provider

<&

HTML5 Web Storage
Web storage — a new JavaScript-only API introduced in
HTML5; managed by the browser
It is meant to be a replacement (supplement) to cookies

W3C recommends a limit of 5MB, but browsers are
allowed to store more per domain.

Should not be used for mission-critical application
functions

Using asynchronous communications via JavaScript to
push the info to the server

Two types of global web storage objects (key-value
collections):

CPET 499/1TC 250 Web Systems, Paul I.
Lin

15

Listing 16.8 Writing web storage — JavaScript code

<form ... >
<h1>Web Storage Writer</h1>
<script language="javascript" type="text/javascript">

if (typeof (localStorage) ==="undefined" || typeof (sessionStorage)
==="undefined") {

alert("Web Storage is not supported on this browser...");

}

else {

document.write("web storage modified");
}
</script>

<p>Go to web storage
read er</p> CPET 499/1TC 250 Web Systems, Paul I.

Lin
</form>

Listing 16.9 Reading web storage

<form id="form1" runat="server">

<h1>Web Storage Reader</h1>

<script language="javascript" type="text/javascript">

if (typeof (localStorage) === "undefined" ||

typeof (sessionStorage) === "undefined") {

alert("Web Storage is not supported on this browser...");

}

else {

document.write("date saved=" + today);
document.write("
favorite artist=" + artist);
document.write("
user name =" + user);

CPET 499/1TC 250 Web Systems, Paul I.

</script> </form> Lin

Why Would We Use Web Storage

» Cookies Disadvantages
Limit in size (4 k)
Being send in every single request-response to/from a given
domain
Potentially disabled by the user
Vulnerable to XSS (Cross-Site Scripting) attack

= Web Storage with JavaScript API
» Local cache for relatively static items available to JavaScript

» One practical use: store XML or JASON from a web service to
reduce server load for subsequent requests by the session

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Figure 16.13 Using
web storage

17

Caching

Using local storage

A vital way to improve the performance of web
applications

HTTP protocol headers related to caching

d
Two strategies to caching web applications

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Fig 16.14 Page output caching

Markup is sent
back to requesting

Retrieve markup
for index . php

from disk cache

index.php

Markup is sent
back to requesting
browser.

Save markup for
index_php
1o disk cache

18

Listing 16.10 Using memcache for Application
data caching

<?php
/llisting 16.10 Using memcache
/I create connection to memory cache

or die ("Could not
connect to memcache server");

$cacheKey = 'topCountries’;

/* If cached data exists retrieve it, otherwise generate and
cache it for next time */

CPET 499/1TC 250 Web Systems, Paul I.
Lin

Listing 16.10 Using memcache for Application
data caching

$countries =
if (!isset($countries)){
/[since every page displays list of top countries as links
/l we will cache the collection
/[first get collection from database
$cgate = new CountryTableGateway($dbAdapter);
$countries = $cgate->getMostPopular();
/I now store data in the cache (data will expire in 240 seconds)

or die ("Failed to save cache data at the server");
}
/I now use the country collection
displayCountryList($countries);
?>

CPET 499/1TC 250 Web Systems, Paul I.
Lin

19

Summary and Conclusion

CPET 499/1TC 250 Web Systems, Paul I.
Lin

20

