CPET 499/ITC 250 Web Systems Chapter 18 Security

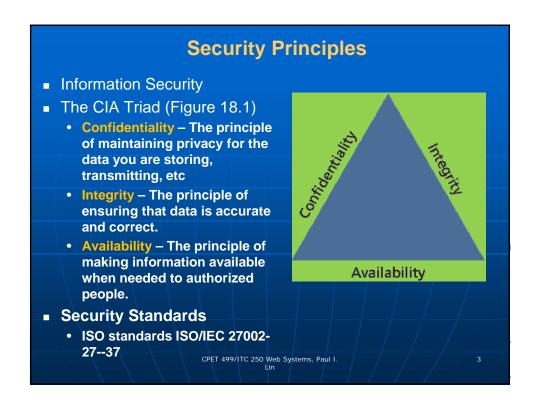
Text Book:

 $^{\ast}\,$ Fundamentals of Web Development, 2nd Edition, by Randy Connolly and Ricardo Hoar, published by Pearson

Purdue University Fort Wayne
Dept. of Computer, Electrical, and Information Technology

Paul I-Hai Lin, Professor http://www.etcs.pfw.edu/~lin

CPET 499/ITC 250 Web Systems, Paul I. Lin


٠,

Topics

Chapter Objectives

- A wide range of security principles and practices
- Best practices of authentication systems and data storage
- About public key cryptography, SSL, and certificates
- How to proactively protect your site against common attacks

CPET 499/ITC 250 Web Systems, Paul I.

Cases: Security Attacks and Impacts

- 2016 Data Security Incident, Uber Newsroom, https://www.uber.com/newsroom/2016-data-incident/
- Uber Hid 2016 Breach, Paying Hackers to Delete Stolen Data, https://www.nytimes.com/2017/11/21/technology/uber-hack.html
- Uber Data Breach Exposed Personal Information of 20
 Million Users, <u>Fortune Magazine</u>, April 1, 2018
- Uber Settles Data Breach Investigation for \$148 Million, The New York Times, 2018/9/26

CPET 499/ITC 250 Web Systems, Paul I.

Cases: Security Attacks and Impacts

- The Biggest Cybersecurity Disasters of 2017 So Far, https://www.wired.com/story/2017-biggest-hacks-so-far/
 - Shadow Brokers (NSA data stolen)
 - WannaCry (ransomware)
 - Petya, NotPetya (malware)
 - Wikileaks CIA Vault 7
 - · Cloudbleed.
 - Macron Campaign Hack
- Marriott reveals data breach of 500 million Starwood guest, Jordan Valinsky, CNN Business, Nov. 30, 2018 ** 500 million Marriott customers have had their data hacked after staying at Hotels including W, Sheration, and Westin, Slnead Baker, Busness Insider, Nov. 30, 2018.

CPET 499/ITC 250 Web Systems, Paul I

Risk Assessment and Management

- Risk a measure of how likely an attack is, and how costly the impact of the attack would be if successful
- Security Standards ISO/IEC 27002-270037
- Risk Assessment Factors: Actors, Impacts, Threats, and Vulnerability
- Actors
 - Internal actors
 - External actors
 - Partner actors
- Impacts
 - A loss of availability
 - A loss of confidentiality
 - A loss of integrity

CPET 499/ITC 250 Web Systems, Paul I Lin

Risk Assessment and Management

Threats

- Refers to a particular path that a hacker cloud use to exploit a vulnerability and gain unauthorized access to your system.
- · Also called attack vectors
- Categories of Threats (STRIDE)
 - Spoofing use someone else's info to access the system
 - Tampering modify some data in unauthorized ways
 - Repudiation remove all trace of their attack, so they cannot be held accountable for other damage done
 - Information disclosure access data they should bot be able to
 - Denial of service prevent the real users from accessing the systems
 - Elevation of privilege

CPET 499/ITC 250 Web Systems, Paul I

Risk Assessment and Management

- Vulnerability the security holes in your system
- The top 10 classes of vulnerability from the Open Web Application Security Project (2013): https://www.owasp.org/index.php/Top_10_2013-Top_10
 - A1. Injection
 - A2. Broken authentication and session management
 - A3. Cross-site scripting
 - A4. Insecure direct object reference
 - A5. Security misconfiguration
 - A6. Sensitive data exposure
 - A7. Missing function level access control
 - A8. Cross-site request forgery (CSRF)
 - A9. Using components with unknown vulnerabilities
 - A10. Un-validated redirects and forwards

CPET 499/ITC 250 Web Systems, Paul I.

Risk Assessment and Management

- The top 10 classes of vulnerability from the Open Web Application Security Project (2017): https://www.owasp.org/images/7/72/OWASP Top 10
 -2017 %28en%29.pdf.pdf
 - A1:2017- Injection
 - A2:2017- Broken Authentication
 - A3:2017 Sensitive Data Exposure
 - A4:2017- XML External Entities (XXE) NEW
 - A5:2017- Broken Access Control (Merged A3+A7 from 2013)
 - A6:2017 Security Misconfiguration
 - A7:2017 Cross-Site Scripting (XSS)
 - A8:2017 Insecure Deserialization (New, Community)
 - A9:2017 Using components with unknown vulnerabilities
 - A10:2017 Insufficient Logging & Monitoring (New, Comm.)

CPET 499/ITC 250 Web Systems, Paul I. Lin 9

Risk Assessment and Management

- The top 10 classes of vulnerability from the Open Web Application Security Project (2017): https://www.owasp.org/images/7/72/OWASP_Top_10
 -2017 %28en%29.pdf.pdf
 - A1:2017- Injection
 - A2:2017- Broken Authentication
 - A3:2017 Sensitive Data Exposure
 - A4:2017- XML External Entities (XXE) NEW
 - A5:2017– Broken Access Control (Merged A3+A7 from 2013)
 - A6:2017 Security Misconfiguration
 - A7:2017 Cross-Site Scripting (XSS)
 - A8:2017 Insecure Deserialization (New, Community)
 - A9:2017 Using components with unknown vulnerabilities
 - A10:2017 Insufficient Logging & Monitoring (New, Comm.)

CPET 499/ITC 250 Web Systems, Paul I Lin

Assessing Risk

- NIST Risk Management Guide for Information Technology Systems (withdrawn, superseded by SP 800-30 Rev. 1), https://csrc.nist.gov/publications/detail/sp/800-30/archive/2002-07-01
- SP 800-30 Rev.1 Guide for Conducting Risk Assessment, https://csrc.nist.gov/publications/detail/sp/800-30/rev-1/final
- Guide to Industrial Control Systems (ICS) Security, 2015, NIST, http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf

CPET 499/ITC 250 Web Systems, Paul I.

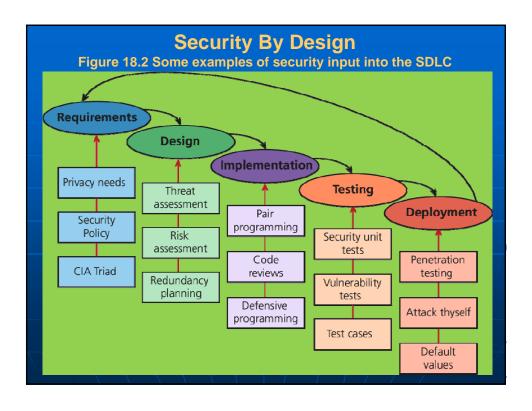
11

Assessing Risk

Table 18.1 Examples an Probability/Impact Risk Assessment Table Using 16 as the Threshold: lowest score for highest impacts.

	Impact(n²)					
P r o		Very Low	Low	Medium	High	Very High
b a	Very High	5	10	20	40	80
b i	High	4	8	16	32	64
\1	Medium	3	6	12	24	48
i t	Low	2	4	8	16	32
у	Very low	1	2	4	8	16
		CPET 499	VITC 250 Web Sys Lin	tems, Paul I.		12

Security Policy


- Usage Policy
 - Social networking policy at work?
- Authentication Policy
 - Access badge
 - Biometric ID
 - Password
 - VPN
- Legal Policy
 - Data Retention and Backup Policies
 - Accessibility Requirements

CPET 499/ITC 250 Web Systems, Paul I.

Business Continuity & Plans

- Admin Password Management
- Backups and Redundancy
 - Example Site
 - A server with Apache, PHP code; a database server?
 - The PHP code for the domain
 - The database dump with all tables and data
 - Choices
 - Live backup (mirrored)
 - Database and code somewhere remotely accessible
- Geographic Redundancy
- Storage Mock Events
- Auditing

CPET 499/ITC 250 Web Systems, Paul I.

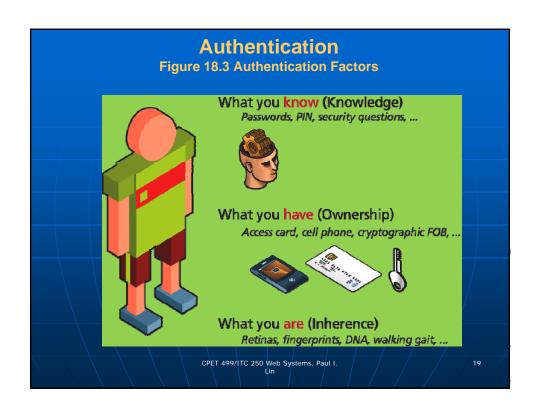
Security By Design

- Code Reviews
 - Peer-reviewed before committing it to the repository
 - · Company coding style and practice
 - · Informal and formal review process
- Unit Testing
 - Code Modules
 - Class
 - Security holes
- Pair Programming
 - · Two programmers working together
- Security Testing
 - Testing the system against scenarios that attempt to break the final system
 - Penetration testing
- Secure by Default

CPET 499/ITC 250 Web Systems, Paul I.

Social Engineering

- Social engineering
 - A broad term given to describe the manipulation of attitudes and behaviors of a populace, often through government or industrial propaganda and/or coercion.
 - A human part of information security that increases the effectiveness of an attack.
 - Social Engineering (Security), https://en.wikipedia.org/wiki/Social_engineering_(security)
 - http://www.social-engineer.org/
- Two popular techniques
 - Phishing scams
 - Security theater


CPET 499/ITC 250 Web Systems, Paul I

17

Social Engineering

- Other References
 - Social Engineering (Security), <u>https://en.wikipedia.org/wiki/Social_engineering_(security)</u>
 - http://www.social-engineer.org/
- Top 5 Social Engineering Exploit Techniques, by James Heary, Network World, http://www.pcworld.com/article/182180/top-5-social-engineering-exploit-techniques.html
 - 1) Familiarity exploit
 - 2) Creating a hostile situation
 - 3) Gathering and using information
 - 4) Get a job there
 - 5) Reading body language

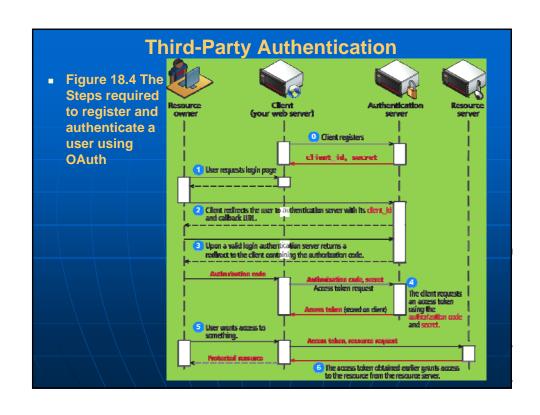
CPET 499/ITC 250 Web Systems, Paul I. Lin

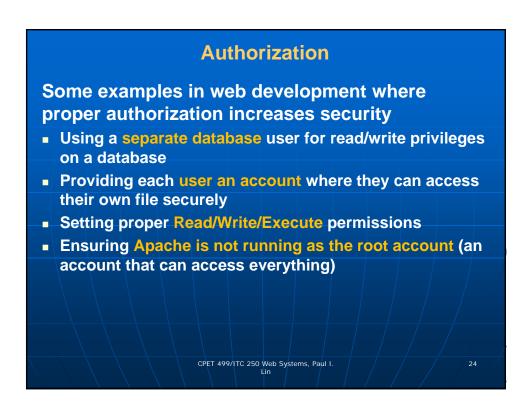
Authentication

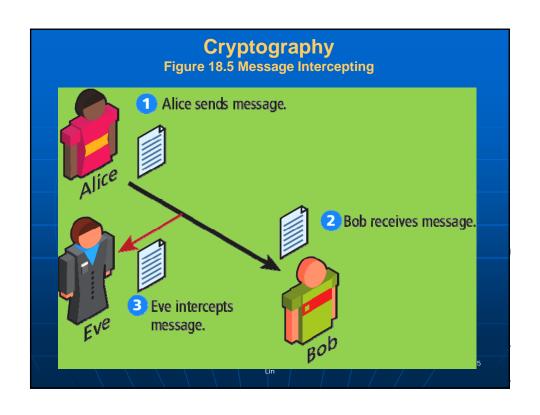
- Authentication Factors
 - Knowledge factors: password, PIN, challenge questions
 - Ownership factors: driver license, passport, cell phone, key to a lock
 - Inherence factors: biometric data fingerprints, retinal patterns, DNA sequence
- Single-Factor Authentication
 - Password/ Magnetized key badge
- Multi-Factor Authentication
 - ATM Machine: Access card and PIN
- Third-Party Authentication
 - Open Authentication (OAuth)

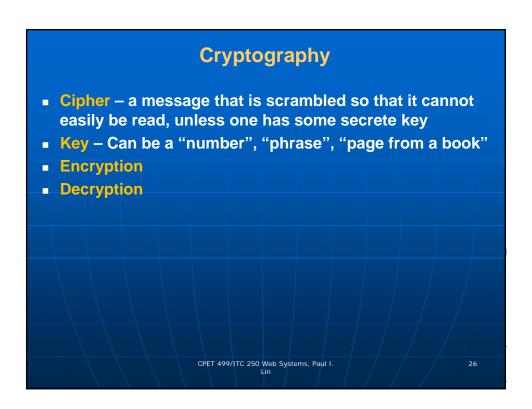
CPET 499/ITC 250 Web Systems, Paul I.

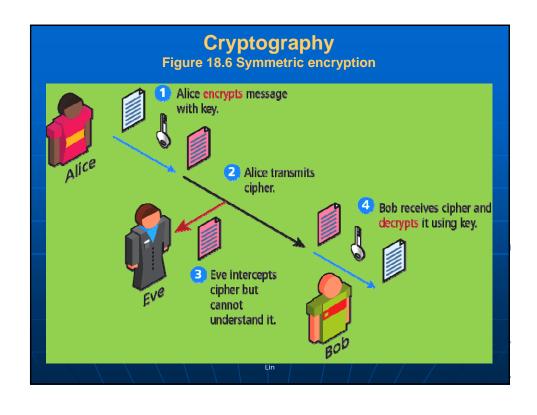
Third Party Authentication

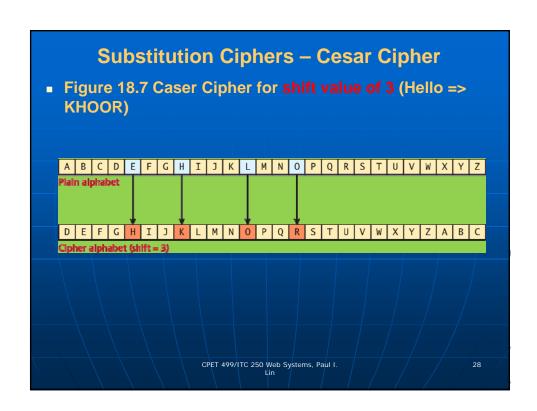

- Open Authentication (OAuth), http://oauth.net/
 - A open protocol to allow secure authorization in a simple standard method from web, mobile and desktop applications.
 - This specification is likely to produce a wide range of non-interoperable implementation.
 - OAuth 2.0, http://oauth.net/2/, Client and Server Libraries for Java, PHP, Python, NodeJS, Ruby, .NET, etc
 - Four Roles: Resource owner, Resource server, Client, Authorization server

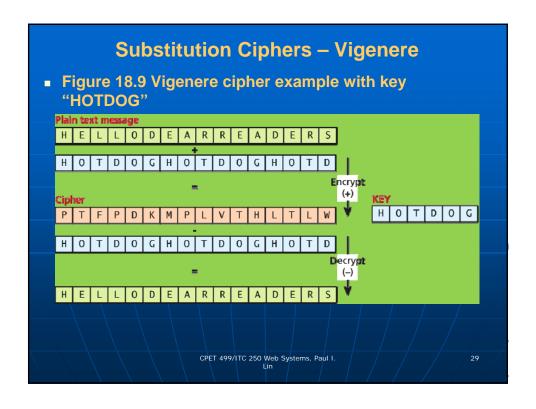

CPET 499/ITC 250 Web Systems, Paul I Lin 21

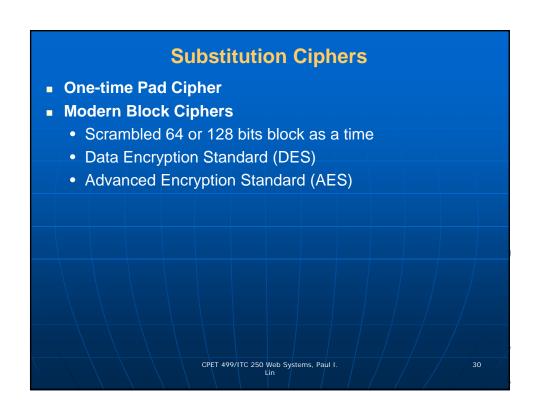

Third Party Authentication

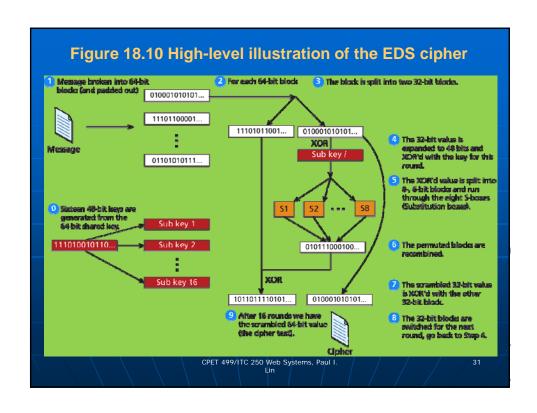

- Open Authentication (OAuth), http://oauth.net/
 - Four Roles
 - Resource owner normally the end user who can gain access to the resource
 - Resource server host the resources and can process request using access tokens
 - Client the application making requests on behalf of the resource owner
 - Authorization server issues tokens to the client upon successful authentication of the resource owner.
 (often this is the same as the resource server)

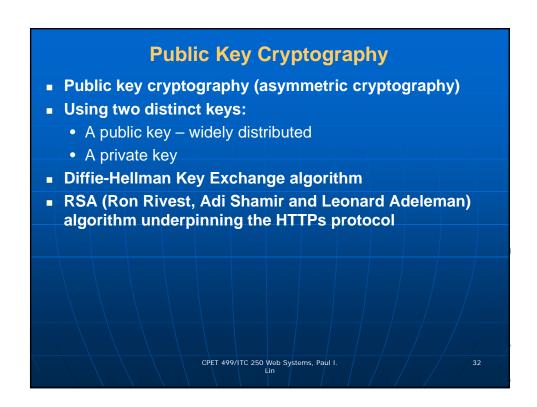

CPET 499/ITC 250 Web Systems, Paul I.

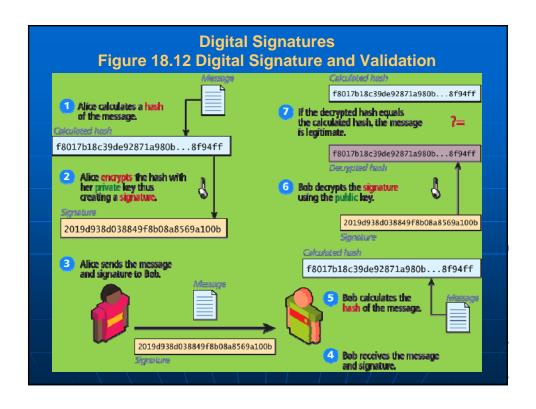


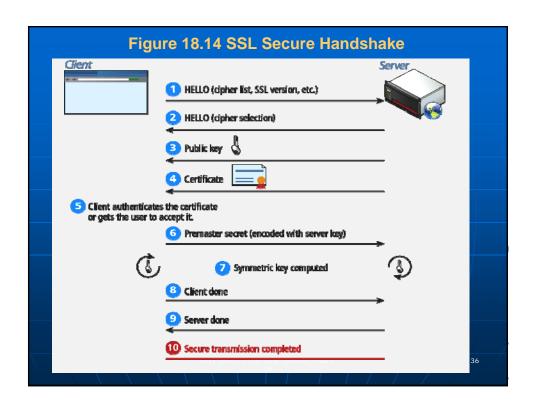


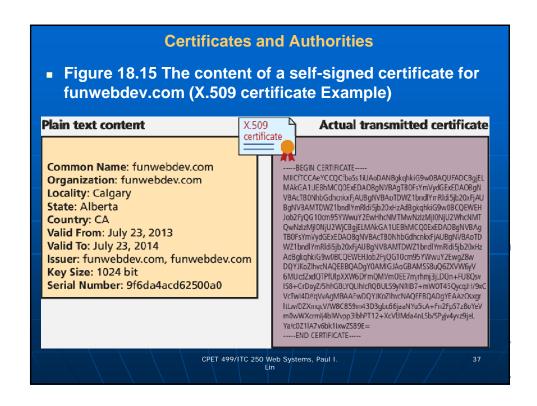






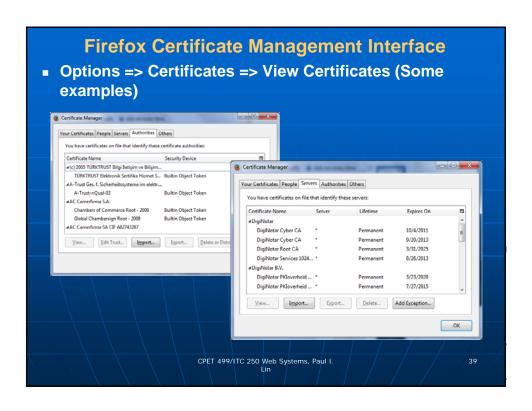






Digital Signatures A mathematically secure way of validating that a particular digital document was created by the person claiming to create it (authenticity) was not modified in transit (integrity), and cannot be denied (non-repudiation) An example using public key cryptography

Hypertext Transfer Protocol Secure (HTTPs) HTTPs is the HTTP running on top of the Transport Layer Security (TLS) TLS v1.0 – an improvement on Secure Socket Layer 3.0 (SSL) For compatibility reason, we refer it as HTTP running on TLS/SSL Secure Handshakes Certificates and Authorities Self-signed Certificates





Certificates and Authorities

- Certificate X.509 certificate which contains many details including
 - Algorithm used
 - The domain it was issued for
 - Some public key information
- X.509 Client Certificate, https://help.sap.com/saphelp_nw73/helpdata/en/43/dc1f a58048070ee100000000a422035/content.htm
- X.509 Certificate Tool, https://msdn.microsoft.com/en-us/library/aa529278.aspx
- X.509 Certificates and Certificate Revocation Lists (CRLs), http://docs.oracle.com/javase/7/docs/technotes/guides/security/cert3.html

CPET 499/ITC 250 Web Systems, Paul I.

References

- Ch. 15 Security, Linux System Administration, Linux System Administration, 2nd ed, by Vicki Stanfield and Roderick Smith, published by Sybex
- Ch. 15 System Security, A Practical Guide to Ubuntu Linux, by Mark G. Sobell, 4th edition, published by Prentice Hall
- Password Formats Basic Authentications, https://httpd.apache.org/docs/2.2/misc/password_encry ptions.html
- The apache-md5 package (OpenSSL MD5() function), https://hackage.haskell.org/package/apache-md5

CPET 499/ITC 250 Web Systems, Paul I Lin 41

Security Best Practices – Microsoft Systems and Servers

References

- Windows 7: Security Features, http://www.microsoft.com/security/pc-security/windows7.aspx
- Windows 10 Security Overview, https://technet.microsoft.com/en-us/library/mt601297(v=vs.85).aspx
- What's New in Windows Server 2016 Technical Preview, Aug. 18, 2015, https://technet.microsoft.com/en-us/library/dn765472.aspx
- Security Best Practice for IIS 8, June 24,
 2013, https://technet.microsoft.com/en-us/library/jj635855.aspx
- Windows Server, https://technet.microsoft.com/en-us/library/bb625087.aspx

CPET 499/ITC 250 Web Systems, Paul I.

Reference - Linux System Administration, 2nd ed, by Vicki Stanfield and Roderick Smith, published by Sybex

- User-based Security
- Port Security
- Host-based Security
- Physical Access Security
- File and/or Device Assignment of Permission

CPET 499/ITC 250 Web Systems, Paul I Lin 43

Security Best Practices – Linux Systems

Reference - Linux System Administration, 2nd ed, by Vicki Stanfield and Roderick Smith, published by Sybex

User-based Security:

- What resources should be available to the claimed user at this time?
- Pluggable Authentication Modules (PAM) to secure the system from intrusion by unauthorized users.
- Password Authentication Algorithms
 - DES (Data Encryption Standard) encoded using the Federal Data Encryption standard algorithm
 - MD5 (Message Digest Algorithm, version 5)
 - Uses RSA Data Security, Inc's algorithm
 - By default on most Linux system

CPET 499/ITC 250 Web Systems, Paul I.

Lir

Reference - Linux System Administration, 2nd ed, by Vicki Stanfield and Roderick Smith, published by Sybex

User-based Security: Hashing Passwords

- Creating Password
 - Salt (2-character) + Clear Text Password => [Hashing Algorithm] => Salt/Password Hash
- Logging In
 - (User Supplied Password) + (/etc/shadow or /etc/passwd) Salt => [Hashing Algorithm] => Hash
 + Stored Hash (/etc/shadow or /etc/password) => Login Fail (Not equal to) OR Login Succeeds (Equal to)

CPET 499/ITC 250 Web Systems, Paul I Lin 45

Security Best Practices – Linux Systems

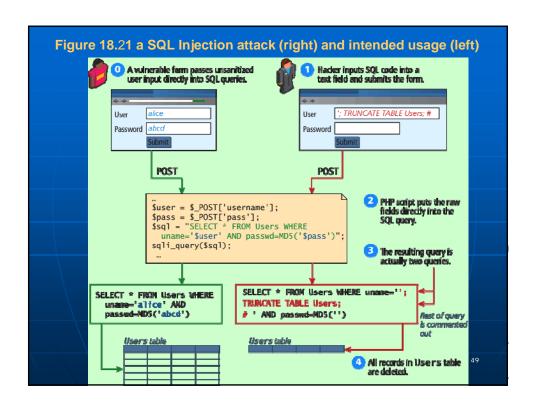
Reference - Linux System Administration, 2nd ed, by Vicki Stanfield and Roderick Smith, published by Sybex

- User-based Security:
 - What resources should be available to the claimed user at this time?
 - Pluggable Authentication Modules (PAM) to secure the system from intrusion by unauthorized users.
- Port Security:
 - Protect network ports from unauthorized hosts and networks
 - Handled by the kernel
 - IP firewall administration (IP chains or IP tables)
- Host-based Security:
 - Restrict network access to system resources and services based on the requesting hosts.

CPET 499/ITC 250 Web Systems, Paul I.

Reference - Linux System Administration, 2nd ed, by Vicki Stanfield and Roderick Smith, published by Sybex

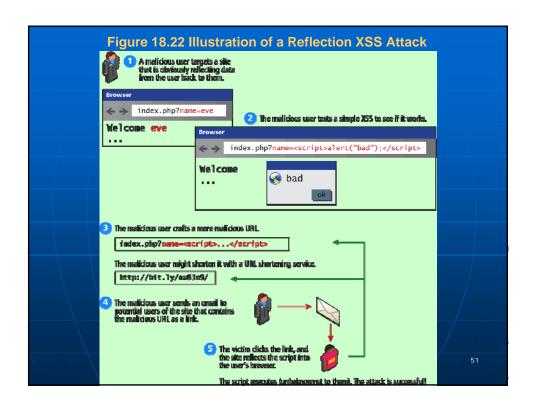
- User-based Security:
 - What resources should be available to the claimed user at this time?
 - Pluggable Authentication Modules (PAM) to secure the system from intrusion by unauthorized users.
- Port Security:
 - Protect network ports from unauthorized hosts and networks
 - Handled by the kernel
 - IP firewall administration (IP chains or IP tables)
- Host-based Security:
 - Restrict network access to system resources and services based on the requesting hosts.

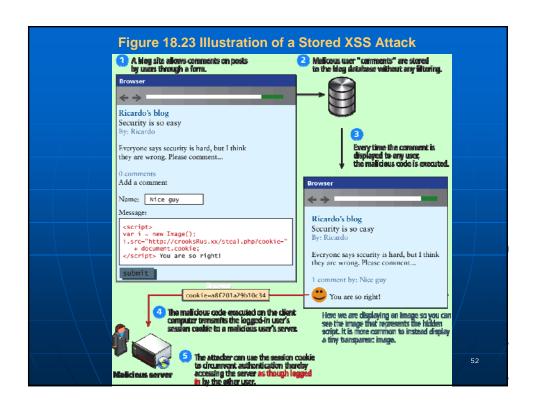

CPET 499/ITC 250 Web Systems, Paul I.

47

Common Threat Vectors

- SQL Injection
 - The attack technique of using reserved SQL symbol to try and make the web server execute a malicious query other than what was intended.
 - Must Sanitize inputs
 - · Give Least possible privileges
- Cross-Site Scripting (XSS)
- Insecure Direct Object Reference
- Denial of Service
- Security Misconfiguration


CPET 499/ITC 250 Web Systems, Paul I.



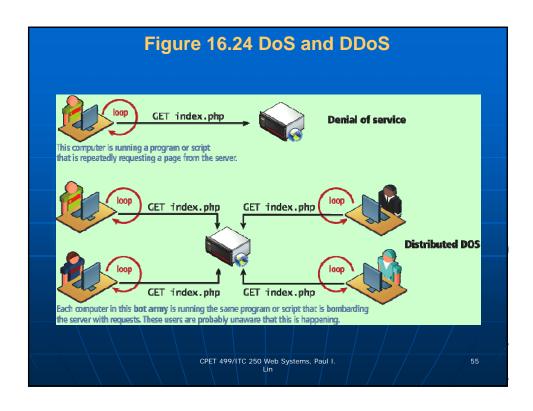
Cross-Site Scripting

- Cross-Site Scripting (XSS) refers to a type of attack in which a malicious script (JavaScript, VBScript, or Action Script, etc) is embedded into an otherwise trustworthy website.
- Two main categories of XSS
 - Reflected XSS (Non-persistent XSS)
 - Are attacks that send malicious content to the sever, so that in the server response, the malicious content is embedded
 - Store XSS (Persistent XSS)
 - More dangerous which may impacts all users visit the site

CPET 499/ITC 250 Web Systems, Paul I.

Common Threat Vectors

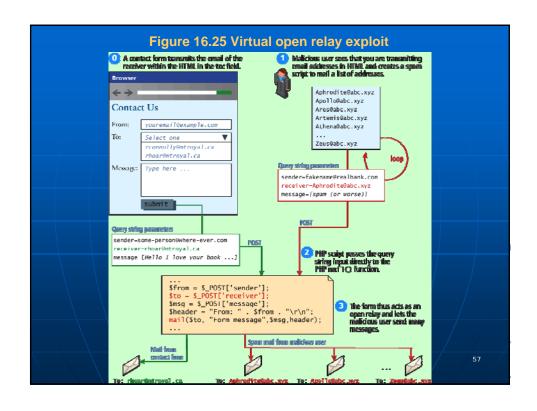
- Insecure Direct Object Reference
 - Expose some internal value or key of the application to the user
 - Then the attackers can then manipulate the internal keys to gain access to things that should not have access to
 - Examples:
 - An archive of the site's PHP code or passwords can be potentially accessed or downloaded
 - A database key in the URLs that are visible to users
 - Storing files on the server
- Denial of Service
- Security Misconfiguration

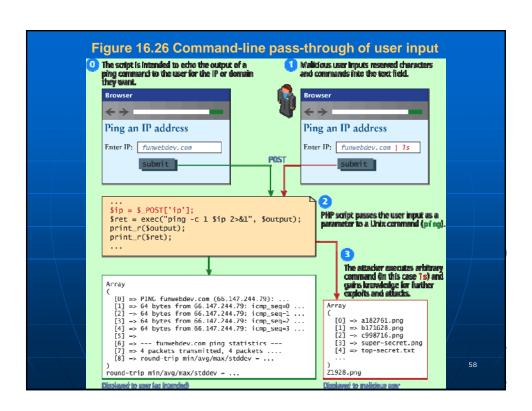

CPET 499/ITC 250 Web Systems, Paul I.

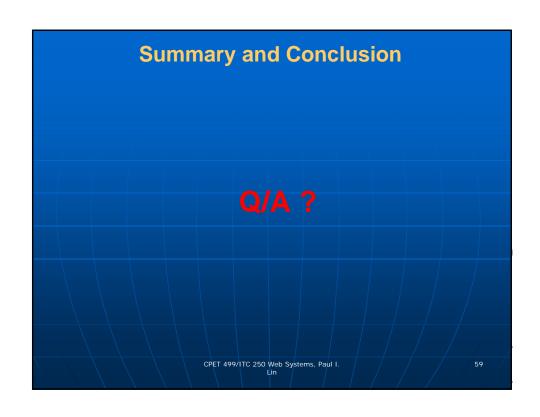
53

Denial of Services

- Denial of Service attacks (DoS)
 - are attacks that aim to overload a server with illegitimate requests in order to prevent the site from responding to the legitimate ones,
 - Methods of prevention
 - Blocking the IP address in the firewall or the Apache server
- Distributed DoS Attack (DDoS)
 - Attacks are coming from multiple machines
 - Recent DDoS attack on Spamhaus servers (generates 300 Gbps worth of requests), http://www.spamhaus.org/news/article/695/answers-about-recent-ddos-attack-on-spamhaus


CPET 499/ITC 250 Web Systems, Paul I




Security Misconfiguration

- Out-of-Date Software
- Open Mail Relays
 - Refers to any email server that allows someone to route email through without authentication
- More Input Attacks
 - Refers to the potential vulnerability that occurs when the users through their HTT requests, transmit a variety of strings and data that are directly used by the server without sanitation.
- Virtual Open Mail Relay Figure 14.23
 - HTML web email send to any email addresses
- Arbitrary program execution Figure 16.24

CPET 499/ITC 250 Web Systems, Paul I.

