
Chapter 7 © 2014 by Pearson Education 1

7.1 Introduction

- SGML is a meta-markup language

- Developed in the early 1980s; ISO std. In 1986

- HTML was developed using SGML in the early

1990s - specifically for Web documents

- Two problems with HTML:

1. Fixed set of tags and attributes

- User cannot define new tags or attributes

- So, the given tags must fit every kind of

document, and the tags cannot connote

any particular meaning

2. There are few restrictions on arrangement or

order of tag appearance in a document

- One solution to the first of these problems:

Let each group of users define its own tags

(with implied meanings)

(i.e., design their own “HTML”s using SGML)

Chapter 7 © 2014 by Pearson Education 2

7.1 Introduction (continued)

- Problem with using SGML:

- It’s too large and complex to use, and it is very
difficult to build a parser for it

- A better solution: Define a lite version of SGML

- XML is not a replacement for HTML

- HTML is a markup language used to describe the
layout of any kind of information

- XML is a meta-markup language that can be used
to define markup languages that can define the
meaning of specific kinds of information

- XML is a very simple and universal way of storing
and transferring data of any kind

- XML does not predefine any tags

- XML has no hidden specifications

Chapter 7 © 2014 by Pearson Education 3

7.1 Introduction (continued)

- We will refer to an XML-based markup language as

a tag set

- Strictly speaking, a tag set is an XML application,

but that terminology can be confusing

- An XML processor is a program that parses XML

documents and provides the parts to an application

- A document that uses an XML-based markup

language is an XML document

7.2 Uses of XML

- Examples:

Common Data Format (CDF) – for describing and

storing scalar and multidimensional data

Scalable Vector Graphics (SVG) – to describe vector

images

Chapter 7 © 2014 by Pearson Education 4

7.2 Uses of XML (continued)

- Examples:

Mathematics Markup Language (MathML) – to

integrate mathematical notation into a Web

document

Chemical Markup Language (CML) - to support

chemistry

GPS eXchange Format (GPX) – to describe GPS

data

Medical Markup Language (MML) – to represent

medical information

Office Open XML (OOXML) – for Microsoft Office

7.3 The Syntax of XML

- The syntax of XML is in two distinct levels:

1. The general low-level rules that apply to all

XML documents

2. An XML schema for a particular XML tag set

Chapter 7 © 2014 by Pearson Education 5

7.3 The Syntax of XML (continued)

- General XML Syntax

- XML documents consist of:

1. data elements

2. markup declarations (instructions for the XML

parser)

3. processing instructions (for the application

program that is processing the data in the

document)

- All XML documents begin with an XML declaration:

<?xml version = "1.0" encoding = "utf-8"?>

- XML names:

- Must begin with a letter or an underscore

- They can include digits, hyphens, and periods

- There is no length limitation

- They are case sensitive (unlike HTML names)

Chapter 7 © 2014 by Pearson Education 6

7.3 The Syntax of XML (continued)

- Syntax rules for XML: same as those of XHTML

- Every XML document defines a single root

element, whose opening tag must appear as

the first line of the document

- An XML document that follows all of these rules

is well formed

<?xml version = "1.0" encoding = "utf-8" ?>

<ad>

<year> 1960 </year>

<make> Cessna </make>

<model> Centurian </model>

<color> Yellow with white trim </color>

<location>

<city> Gulfport </city>

<state> Mississippi </state>

</location>

</ad>

Chapter 7 © 2014 by Pearson Education 7

7.3 The Syntax of XML (continued)

- Attributes are not used in XML the way they are in

HTML

- In XML, you often define a new nested tag to

provide more info about the content of a tag

- Nested tags are better than attributes, because

attributes cannot describe structure and the

structural complexity may grow

- Attributes should always be used to identify
numbers or names of elements (like HTML id and

name attributes)

Chapter 7 © 2014 by Pearson Education 8

7.3 The Syntax of XML (continued)

<!-- A tag with one attribute -->

<patient name = "Maggie Dee Magpie">

...

</patient>

<!-- A tag with one nested tag -->

<patient>

<name> Maggie Dee Magpie </name>

...

</patient>

<!-- A tag with one nested tag, which contains

three nested tags -->

<patient>

<name>

<first> Maggie </first>

<middle> Dee </middle>

<last> Magpie </last>

</name>

...

</patient>

Chapter 7 © 2014 by Pearson Education 9

7.4 XML Document Structure

- An XML document often uses two auxiliary files:

- One to specify the structural syntactic rules

- One to provide a style specification

- An XML document has a single root element, but

often consists of one or more entities

- An XML document has one document entity

- Reasons for entity structure:

1. Large documents are easier to manage

2. Repeated entities need not be literally repeated

3. Binary entities can only be referenced in the

document entities

Chapter 7 © 2014 by Pearson Education 10

7.4 XML Document Structure (continued)

- When the XML parser encounters a reference to

a non-binary entity, the entity is merged in

- Entity names:

- No length limitation

- Must begin with a letter, a dash, or a colon

- Can include letters, digits, periods, dashes,

underscores, or colons

- A reference to an entity has the form:

&entity_name;

- Predefined entities (as in HTML):

< <

> >

& &

" "

' '

Chapter 7 © 2014 by Pearson Education 11

7.4 XML Document Structure (continued)

- If several predefined entities must appear near
each other in a document, it is better to avoid
using entity references

- Character data section

<![CDATA[content]]>

e.g., instead of

Start > > > > HERE

< < < <

use

<![CDATA[Start >>>> HERE <<<<]]>

- If the CDATA content has an entity reference,
it is taken literally

Chapter 7 © 2014 by Pearson Education 12

7.5 Namespaces

- A markup vocabulary is the collection of all of the
element types and attribute names of a markup
language (a tag set)

- An XML document may define its own tag set and
also use those of another tag set - CONFLICTS!

- An XML namespace is a collection of names used
in XML documents as element types and attribute
names

- The name of an XML namespace has the form of
a URL

- A namespace declaration has the form:

<element_name xmlns[:prefix] = URL>

- The prefix is a short name for the namespace,
which is attached to names from the
namespace in the XML document

<gmcars xmlns:gm = "http://www.gm.com/names">

- In the document, you can use <gm:pontiac>

- Purposes of the prefix:
1. Shorthand
2. URL includes characters that are illegal in XML

Chapter 7 © 2014 by Pearson Education 13

7.5 Namespaces (continued)

- Can declare two namespaces on one element

<gmcars xmlns:gm = "http://www.gm.com/names"

xmlns:html =

"http://www.w3.org/1999/xhtml">

- The gmcars element can now use gm names and
html/xhtml names

Chapter 7 © 2014 by Pearson Education 14

7.6 XML Schemas

- Three purposes of an XML schema:

1. Specify the elements and attributes of an XML
language

2. Specify the structure of its instance XML
documents

3. Specify the data type of every element and
attribute of its instance XML documents

- Schemas are written using a namespace:

http://www.w3.org/2001/XMLSchema

- Every XML schema has a single root, schema

The schema element must specify the namespace
for schemas as its xmlns:xsd attribute

- Every XML schema itself defines a tag set, which
must be named

targetNamespace =

"http://cs.uccs.edu/planeSchema"

Chapter 7 © 2014 by Pearson Education 15

7.6 XML Schemas (continued)

- If we want to include nested elements, we must
set the elementFormDefault attribute to
qualified

- The default namespace must also be specified

xmlns = "http://cs.uccs.edu/planeSchema"

- A complete example of a schema element:

<xsd:schema

<!-- Namespace for the schema itself -->

xmlns:xsd =

"http://www.w3.org/2001/XMLSchema"

<!-- Namespace where elements defined here

will be placed -->

targetNamespace =

"http://cs.uccs.edu/planeSchema"

<!-- Default namespace for this document -->

xmlns = "http://cs.uccs.edu/planeSchema"

<!-- Next, specify non-top-level elements to

be in the target namespace -->

elementFormDefault = "qualified">

Chapter 7 © 2014 by Pearson Education 16

7.6 XML Schemas (continued)

- Defining an instance document

- The root element must specify the namespaces
it uses

1. The default namespace

2. The standard namespace for instances
(XMLSchema-instance)

3. The location where the default namespace is
defined, using the schemaLocation attribute,
which is assigned two values

<planes

xmlns = "http://cs.uccs.edu/planeSchema"

xmlns:xsi =

http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation =

"http://cs.uccs.edu/planeSchema

planes.xsd" >

- Data Type Categories

1. Simple (strings only, no attributes and no
nested elements)

2. Complex (can have attributes and nested
elements)

Chapter 7 © 2014 by Pearson Education 17

7.6 XML Schemas (continued)

- XMLS defines 44 data types

- Primitive: string, Boolean, float, …

- Derived: byte, decimal, positiveInteger, …

- User-defined (derived) data types – specify
constraints on an existing type (the base type)

- Constraints are given in terms of facets

(totalDigits, maxInclusive, etc.)

- Both simple and complex types can be either
named or anonymous

- Elements can be either:

1. Local, which appears inside an element
that is a child of schema, or

2. Global, which appears as a child of schema

Chapter 7 © 2014 by Pearson Education 18

7.6 XML Schemas (continued)

- Defining a simple type:

- Use the element tag and set the name and type
attributes

<xsd:element name = "bird"

type = "xsd:string" />

- An instance could have:

<bird> Yellow-bellied sap sucker </bird>

- Element values can be constant, specified with
the fixed attribute

fixed = "three-toed"

- User-Defined Types

- Defined in a simpleType element, using facets
specified in the content of a restriction
element

- Facet values are specified with the value
attribute

Chapter 7 © 2014 by Pearson Education 19

7.6 XML Schemas (continued)

<xsd:simpleType name = "middleName" >

<xsd:restriction base = "xsd:string" >

<xsd:maxLength value = "20" />

</xsd:restriction>

</xsd:simpleType>

- There are several categories of complex types,
but we discuss just one, element-only elements

- Element-only elements are defined with the
complexType element

- Use the sequence tag for nested elements that
must be in a particular order

- Use the all tag if the order is not important

Chapter 7 © 2014 by Pearson Education 20

7.6 XML Schemas (continued)

<xsd:complexType name = "sports_car" >

<xsd:sequence>

<xsd:element name = "make"

type = "xsd:string" />

<xsd:element name = "model "

type = "xsd:string" />

<xsd:element name = "engine"

type = "xsd:string" />

<xsd:element name = "year"

type = "xsd:string" />

</xsd:sequence>

</xsd:complexType>

- Nested elements can include attributes that give
the allowed number of occurrences
(minOccurs, maxOccurs, unbounded)

 SHOW planes.xsd and planes1.xml

- The choice element can have any number of
elements, only one of which can appear

- We can define nested elements elsewhere

<xsd:element name = "year" >

<xsd:simpleType>

<xsd:restriction base = "xsd:decimal" >

<xsd:minInclusive value = "1990" />

<xsd:maxInclusive value = "2003" />

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

Chapter 7 © 2014 by Pearson Education 21

7.6 XML Schemas (continued)

- The global element can be referenced in the
complex type with the ref attribute

<xsd:element ref = "year" />

- Entities in schemas

- Defined as an element:

<xsd:element name = ″c″ type = ″xsd:token″

fixed = ″Cessna″ />

Use: <make> <c> </make>

- Validating Instances of XML Schemas

- One validation tool is xsv, which is available
from:

http://www.ltg.ed.ac.uk/~ht/xsv-status.html

- Note: If the schema is incorrect (bad format), xsv
reports that it cannot find the schema

Chapter 7 © 2014 by Pearson Education 22

7.7 Displaying Raw XML Documents

- An XML browser should have a default style
sheet for an XML document that does not
specify one

- You get a stylized listing of the XML

 SHOW planes.xml with a browser

Chapter 7 © 2014 by Pearson Education 23

7.8 Displaying XML Documents with
CSS

- A CSS style sheet for an XML document is just a
list of its tags and associated styles

- The connection of an XML document and its style
sheet is made through an xml-stylesheet
processing instruction

<?xml-stylesheet type = "text/css"

href = "mydoc.css"?>

 SHOW planes.css and run planes.xml

7.9 XSLT Style Sheets

- XSL began as a standard for presentations of XML
documents

- Split into three parts:

- XSLT – Transformations
- XPATH - XML Path Language
- XSL-FO - Formatting objects for printable docs

- XSLT uses style sheets to specify
transformations

Chapter 7 © 2014 by Pearson Education 24

7.9 XSLT Style Sheets (continued)

- An XSLT processor merges an XML document into
an XSLT document (a style sheet) to create an XSL
document

- This merging is a template-driven process

- XSLT processor examines the nodes of the XML
document, comparing them with the XSLT
templates

- Matching templates are put in a list of templates
that could be applied– if more than one, a set of
rules determine which is used (only one is
applied)

- Applying a template causes its body to be placed
in the XSL document

- An XSLT style sheet can specify page layout,
page orientation, writing direction, margins, page
numbering, etc.

- The processing instruction we used for connecting
a XSLT style sheet to an XML document is used to
connect an XSLT style sheet to an XML document

<?xml-stylesheet type = "text/xsl"

href = "XSLT style sheet"?>

Chapter 7 © 2014 by Pearson Education 25

7.9 XSLT Style Sheets (continued)

<?xml version = "1.0" encoding = "utf-8" ?>

<!-- xslplane.xml -->

<?xml-stylesheet type = "text/xsl"

href = "xslplane1.xsl" ?>

<plane>

<year> 1977 </year>

<make> Cessna </make>

<model> Skyhawk </model>

<color> Light blue and white </color>

</plane>

- An XSLT style sheet is an XML document with a
single element, stylesheet, which defines
namespaces
<xsl:stylesheet xmlns:xsl =

"http://www.w3.org/1999/XSL/Format"

xmlns =

"http://www.w3.org/1999/xhtml">

- If a style sheet matches the root element of the
XML document, it is matched with the template:

<xsl:template match = "/">

- XSLT documents include two different kinds of
elements, those with content and those for which
the content will be merged from the XML doc
- Elements with content often represent HTML

elements

Happy Easter!

Chapter 7 © 2014 by Pearson Education 26

7.9 XML Transformations and Style
Sheets (continued)

- XSLT elements that represent HTML elements are
simply copied to the merged document

- The XSLT value-of element

- Has no content

- Uses a select attribute to specify part of the XML
data to be merged into the new document

<xsl:value-of select = ”CAR/ENGINE" />

- The value of select can be any branch of the
document tree

 SHOW xslplane1.xsl and display xslplane.xml

- xslplane1.xsl is more complex than necessary

 SHOW xslplane2.xsl

- The XSLT for-each element

- Used when an XML document has a sequence of
the same elements

 SHOW xslplanes.xml, xslplanes.xsl & display

http://www.w3.org/1999/XSL/Format

Chapter 7 © 2014 by Pearson Education 27

7.10 XML Processors

- Purposes:

1. Check the syntax of a document for well-
formedness

2. Replace all references to entities by their
definitions

3. Copy default values (from XML schema)
into the document

4. If an XML schema is specified and the
processor includes a validating parser, the
structure of the document is validated

- Two ways to check well-formedness:

1. A browser with an XML parser

2. A stand-alone XML parser

- There are two different approaches to designing
XML processors:

- SAX and the DOM approach

Chapter 7 © 2014 by Pearson Education 28

7.10 XML Processors (continued)

- The SAX (Simple API for XML) Approach:

- Widely accepted and supported

- Based on the concept of event processing:

- Every time a syntactic structure (e.g., a tag, an
attribute, etc.) is recognized, the processor
raises an event

- The application defines event handlers to
respond to the syntactic structures

- The DOM Approach

- The DOM processor builds a DOM tree structure
of the document

(Similar to the processing by a browser of an
HTML document)

- When the tree is complete, it can be traversed
and processed

Chapter 7 © 2014 by Pearson Education 29

7.10 XML Processors (continued)

- Advantages of the DOM approach:

1. Good if any part of the document must be
accessed more than once

2. If any rearrangement of the document must be
done, it is facilitated by having a
representation of the whole document in
memory

3. Random access to any part of the document is
possible

4. Because the whole document is parsed before
any processing takes place, processing of an
invalid document is avoided

- Disadvantages of the DOM approach:

1. Large documents require a large memory

2. The DOM approach is slower

- Note: Most DOM processors use a SAX front
end

Chapter 7 © 2014 by Pearson Education 30

7.10 Web Services

- The ultimate goal of Web services:
- Allow different software in different places,

written in different languages and resident on
different platforms, to connect and interoperate

- The Web began as provider of markup documents,
served through the HTTP methods, GET and
POST
- An information service system

- A Web service is closely related to an information
service

- The original Web services were provided via
Remote Procedure Call (RPC), through two
technologies, DCOM and CORBA

- DCOM and CORBA use different protocols,
which defeats the goal of universal component
interoperability

- There are three roles required to provide and use
Web services:

1. Service providers
2. Service requestors
3. A service registry

Chapter 7 © 2014 by Pearson Education 31

7.10 Web Services (continued)

- Web Service Definition Language (WSDL)

- Used to describe available services, as well as
message protocols for their use

- Universal Description, Discovery, and
Integration Service (UDDI)

- Used to create Web services registry, and also
methods that allow a remote system to
determine which services are available

- Standard Object Access Protocol (SOAP)

- An XML-based specification that defines the
forms of messages and RPCs

- Supports the exchange of information among
distributed systems

- A SOAP message is an XML document that
includes an envelope

- The body of a SOAP message is either a
request or a response

