
10/27/2014

1

Web Based Point

Of Sale System

Jeremiah Bauer

Student of Computer Engineering Technology

Gary Steffen Faculty Advisor

Paul Lin CPET 491 Professor

May 2, 2014

Topics

 Introduction

 Previous system

 System Design

 System Integration and Testing

 Project Schedule

 Labor and Monetary costs

 Risk Management

 Lessons Learned

 Demonstration

2

10/27/2014

2

Introduction

 Sponsored By Dan’s Pies in North Webster, IN

 Opened in 1990

 Small business opened it’s first retail location in

2010

 Project was a success

 Completed on time and under budget

 Meets all requirements set forth in phase 1

3

Previous System

 Only process sales with 7 categories of items

 Uses cookies to pass sales data

 Sales data was larger than maximum size of cookie

 Web based

 MySQL Backend

 PHP server side Programming

 HTML

 JavaScript

 CSS

4

10/27/2014

3

System Design

 Ruby On Rails

 Apache Webserver

 Phusion Passenger (mod_rails)

 PostgreSQL

 CentOS 6.5

 HTML5

 JavaScript (jQuery)

 CSS3 (Bootstrap)

5

Tasks in Scope

 Processing Sales

 Designing a database schema

 Reading and writing barcodes

 Printing receipts

 Sales reporting

 Create, update, and delete items

6

10/27/2014

4

Out of Scope

Credit card processing

 Inventory control system

 Invoice generation system

 Reservation system

7

Top level System Diagram8

Switch

Client PC

IP Address: DHCP Assigned

USB Receipt

Printer

USB Barcode

Scanner
PostgreSQL DB Server – Unix

Socket

Apache Webserver- TCP Port 80

IP Address: 192.168.1.99

 Point of Sale Top Level Diagram

10/27/2014

5

Database Schema
9 Item

Order OrderDetail

PosConfig

item_id: serialPK

name: character

varying

description:

character varying

price: numeric

tax rate: numeric

upcCode: integer

order_id: serialPK

order_date:

timestamp with

timezone default

now()

order_detail_idPK

FK: order_id:

integer

item_description:

character varying

item_name:

character varying

item_price:

character varying

item_quantity:

character varying

item_tax_rate:

numeric

pos_config_id:

serial
PK

name: character

varying

value: character

varying

Rails Model Class diagram
10

Item

Attribute:

id::integer

name::varchar

description::varchar

price::numeric

taxRate::numeric

upcCode::integer

Methods:

barCode()

ActiveRecord::Base

Rails Base Class

Documentation:

http://api.rubyonrails.org/

classes/ActiveRecord/

Base.html

PosConfig

Atrribute:

id::integer

Name::varchar

Value::varchar

Order

Attribute:

id::integer

orderDate::date

OrderDetail

id::integer

orderId::integer

name::varchar

description::varchar

price::numeric

taxRate::numeric

upcCode::integer

10/27/2014

6

Rails Controller Class Diagram
11

ApplicationController

ItemsController

params

methods:

public:

index()

show()

new()

edit()

create()

update()

destroy()

retrieveBarcode()

private:

set_item()

item_params()

ActionController::Base

Rails Base Class

Documentation:

http://api.rubyonrails.org/

classes/ActionController/

Base.html

PosConfigsController

params

methods:

public:

index()

show()

new()

edit()

create()

update()

destroy()

private:

set_pos_config()

pos_config_params()

SalesController

params

methods:

completeSale()

reporting()

report()

Rails Views

 Welcome Landing Page

 Application Layout

 Application Header Layout

 Item New/Edit/Show

 Configuration New/Edit/Show

 Sales Page

 Reporting Page

12

10/27/2014

7

Find Item Sequence of Operations
13

USB Scanner Host PC Webserver DB Server

Find Item Sequence

Item ID

/items/searchById

findItemById()

<item result set

Item Details

Sales Sequence of Operation
14

Complete Order Sequence

Host PC Webserver DB Server

User presses "Complete Order"

Sends order contents in json structure

getNewOrderID()

return orderID

Inserts contents of

Order using new OrderID

returns Success or Failure

Returns success or failure

prints receipt if success

10/27/2014

8

JavaScript Function List

 lookupItemById()

 insUpdProductRow(product)

 updateOrderTotals()

 applyPayment()

 runReport()

 completeSale()

15

CSS Classes

 logo

 barcode

 totalContainer

 itemContainer

 sales-container

 noItemsCell

 total

 receiptLogo

 receiptQuantity

16

10/27/2014

9

Most important requirement

 The system shall be able to process a sale with more than 7

items.

17

Secondary Requirements

 The system shall be able to generate bar codes

by using a Ruby image processing library.

 The system shall be able to print a receipt.

 The system shall be able to generate a sales

report.

18

10/27/2014

10

Receipt Printing

 Uses a USB Epson ReadyPrint T20 Direct Thermal

Printer

 Cost $157.24

 Uses JavaScript, HTML, and CSS to generate the

receipt

 Created only after sale is successfully inserted

into database

19

Sample Receipt
20

10/27/2014

11

Barcode Generation
 Uses barcode encoding 39

 USB Barcode Scanner

 Generated using the “barby” barcode library

 Generated based on the items id in the items

table

21

def generateBarcode()

barcode = Barby::Code39.new(self.id.to_s)

fileName = "public/" + self.id.to_s + ".png"

File.open(fileName , 'w'){|f|

f.write barcode.to_png

}

return fileName

end

Sample Barcode22

10/27/2014

12

Project Schedule23

 Required approximately 16 weeks of effort

 Most tasks were completed on time

 Receipt printing and main sales page were minor

road blocks

Labor Costs

 175 Estimated hours

 107 actual hours

24

10/27/2014

13

Monetary costs

 $200.00 Estimated cost

 $157.24 Actual cost

25

Risk Management

 Highest risk identified in Phase 1 was that the

system would not be able to process 7

categories of items.

 Was not encountered

 Project schedule was second highest risk

 Not encountered project was completed on time

and under budget

 Not being able to create barcodes

 Encountered and mitigated by avoided by

reading documentation

26

10/27/2014

14

Lessons Learned

 Learned a new web framework (Ruby on Rails)

 Learned a new CSS framework (Bootstrap)

 JavaScript floating point calculations issues

27

Conclusion

 Project was a success

 Met all requirements set forth in Phase 1

28

10/27/2014

15

Demonstration

29

