10/27/2014

Web Based Point
Qf Sale System

Jeremiah Bauer
Student of Computer Engineering Technology

Gary Steffen Faculty Advisor
Paul Lin CPET 491 Professor

May 2, 2014

Topics

» |ntroduction

= Previous system

= System Design

» System Integration and Testing
» Project Schedule

» | abor and Monetary costs

» Risk Management

®» |essons Learned

®» Demonstration

10/27/2014

Infroduction

» Sponsored By Dan’s Pies in North Webster, IN
» Openedin 1990

» Small business opened it's first retail location in
2010

» Project was a success
» Completed on fime and under budget
» Meets all requirements set forth in phase 1

Previous System

» Only process sales with 7 categories of items

= Uses cookies to pass sales data

= Sales data was larger than maximum size of cookie
= Web based
=» MySQL Backend
= PHP server side Programming
» HTML
= JavaScript
» CSS

10/27/2014

System Design

= Ruby On Rails

» Apache Webserver

- ®» Phusion Passenger (mod_rails)
» PostgreSQL

» CentOS 6.5

= HTML5

= JavaScript (jQuery)

» CSS3 (Boofstrap)

Tasks in Scope

®» Processing Sales

» Designing a database schema
'®» Reading and writing barcodes

» Printing receipts

= Sales reporting

» Creafe, update, and delete items

10/27/2014

Out of Scope

» Credit card processing

® |nventory control system
® |[nvoice generation system
» Reservation system

Top level System Diagram

Point of Sale Top Level Diagram

N .

USB Receipt Client PC USB Barcode
Printer IP Address: DHCP Assigned Scanner

Switch

PostgreSQL DB Server - Unix
Socket
Apache Webserver- TCP Port 80
IP Address: 192.168.1.99

item_id: serial

name: character
varying

description:
character varying

price: numeric
tax rate: numeric

upcCode: integer

PosConfig

pos_config_id:
serial

name: character
varying

value: character
varying

Attribute:
id:iinteger

Database Schema

order_id: serial

order_date:
timestamp with
timezone default
now()

Rails Base Class
Documentation:
http://api.rubyonrails.org/
classes/ActiveRecord/

Base.html

OrderDetail

order_detail_i

FK: order_id:
integer

item_name:
character varying

item_description:
character varying

item_price:
character varying

item_quantity:
character varying

item_tax_rate:
numeric

Rails Model Class diagram

ActiveRecord::Base

name::varchar
description::varchar
price::numeric
taxRate::numeric
upcCode::integer

PosConfig

Atrribute:
id:integer
Name::varchar
Value::varchar

Attribute:
id::integer

Methods:
barCode()

orderDate::date

OrderDetail

id::integer
orderld::integer
name::varchar
description::varchar
pricez:numeric
taxRate:numeric
upcCode::integer

10/27/2014

Rails Base Class
Documentation:
http://api.rubyonrails.org/
classes/ActionController/
Base.html

ApplicationController

Rails Controller Class Diagram

ActionController::Base

params

[temsController

SalesController

PosConfigsController

10/27/2014

params params
methods: methods: methods:
public: completeSale() public:
index() reporting() index()
show() report() show()
new() new()
edit() edit()
create() create()
update() updatef()
destroy() destroy()
retrieveBarcode() private:
private: set_pos_config()
§el_\tem() pos_config_params()
item_params()

Rails Views

» Welcome Landing Page

= Application Layout
= Application Header Layout

» |[fem New/Edit/Show

» Configuration New/Edit/Show

» Sales Page
» Reporting Page

Find Item Sequence of Operations

Find Iltem Sequence

USB Scanner
BE—

Host PC
—»

Item ID

< —-ltem Details ——

|
I
+—/items/searchByld-» }

——findltemByld()—»|

:<f -<item result set —

Sales Sequence of Operation

Complete Order Sequence

Sends order contents in json structure

Ke———— Returns success o failure
prints receipt if success

Webserver
I
I

User presses "Complete Order"
p Dl »

|
|

F————————getNewOrder D ————— !
| !
(St —— = retum orderlD — — — — — — — =

| Inserts contents of) |
| Order using new OrderlD 1
(S retuns Sucoess or Failure — — — — — -

10/27/2014

10/27/2014

JavaScript Function List

» |[ookupltemByld()

» insUpdProductRow (product)
~ = ypdateOrderTotals()

= applyPayment()

= runReport()

=» completeSale()

CSS Classes

®» [0go

» parcode

~w» tofalContainer

» jfemContainer

» sales-contfainer
» noltemsCell

= fotal

» receiptLogo

» receiptQuantity

Most important requirement

» The system shall be able to process a sale with more than 7
items.

ﬁDaﬂ’s Pies Sales Reporting Administrationv

Item Description Quantity Unit Price Tax Rate Item Total Sub Total: $131.00

Cherry Pie 3 7.50 7.0 24.08 Tax: $9.17
Red Raspberry Pie 2 11.00 7.0 2354 Order Total: $140.17
Apple Pie 2 8.50 7.0 18.19

Peanut Butter Ple 2 9.50 7.0 20.33 Amount Tendered:
Tollhouse Pie 2 8.25 7.0 17.66

Strawberry Pie 1 8.50 7.0 9.10
Baked Strawbery Pie 1 8.50 7.0 9.10 Amount Paid:
Chocolate Pie 1 8.50 7.0 9.10 Change Due
Coconut Pie 1 8.50 7.0 9.10

Complete Sale

Secondary Requirements

» The system shall be able to generate bar codes
by using a Ruby image processing library.

~= The system shall be able to print a receipt.

» The system shall be able to generate a sales
report.

10/27/2014

10/27/2014

Receipt Printing

» UJses a USB Epson ReadyPrint T20 Direct Thermal
Printer

= Cost $157.24

» Uses JavaScript, HTML, and CSS to generate the
receipt

» Creatfed only after sale is successfully inserted
intfo database

Sample Receipt

Dan's Pies
9266 E Backwater Rd
North Webster, IN 46555
Red Raspbery Pie
3@ $11.00 35.31
Apple Pie
2@ $8.50 18.19
Peanut Butter Pie
‘ 1@ $9.50 10.17
Tollhouse Pie
1@$825 8.83
} Baked Strawberny Pie
1@ $8.50 9.10
‘ Strawbeny Pie
1@ $8.50 9.10

Sub Total: $84.75

Tax: $5.93

Order Total: $90.68
Amount Tendered: $91.68
Change Due: $1.00

l Thank You!

10

» |Jses barcode encoding 39
» |JSB Barcode Scanner

table
def generateBarcode()

File.open(fleName , 'W'){| f|

f.write barcode.to_png

fileName

end

Sample Barcode

¥ Dan's Pies Sales Reporting

Name: Cherry Pie
Description: Pie
Quantity:

Price: $7.50

Taxrate: 7.0%

sarcode: | [NNNREIERT TN

Edit | Back

Barcode Generation

» Generated using the "barby” barcode library
» Generated based on the items id in the items

barcode = Barby::Code3%.new(self.id.to_s)
fileName = "public/" + self.id.to_s + ".png"

Administration -

10/27/2014

11

Project Schedule

» Required approximately 16 weeks of effort
» Most tasks were completed on time

- m» Receipt prinfing and main sales page were minor
road blocks

Labor Costs

®» |75 Estimated hours
» 107 actual hours

10/27/2014

12

Monetary costs

» $200.00 Estimated cost
» $157.24 Actual cost

Risk Management

» Highest risk idenfified in Phase 1 was that the
system would not be able to process 7
categories of items.

» Was not encountered
- Project schedule was second highest risk

= Not encountered project was completed on time
and under budget

= Noft being able to create barcodes

» Fncountered and mitigated by avoided by
reading documentation

10/27/2014

13

Lessons Learned

» | earned a new web framework (Ruby on Rails)
» | earned a new CSS framework (Boofstrap)
~» JavaScript floating point calculations issues

Conclusion

» Project was a success
= Met all requirements set forth in Phase 1

10/27/2014

14

10/27/2014

Demonstration

15

