
Java Multi-Thread Programming 121

6. Java Multi-Threading

Introduction

• Java threads make it easy to allow a program to include multiple

independent activities such as computation, message display, printing, file

I/O, etc., to initiated as new threads which act asynchronously and to gain

the following potential benefits:

o Responsiveness

o Resource sharing

o Economy

o Utilization of Multiprocessor Architecture

• Cooperation of multiple threads in same job or task may achieve higher

throughput and improved performance.

• A thread is a section of code executed independently of other threads of

control within a single program.

• Overheads of multi-threading might include

o Thread construction overhead

o Context-switching overhead

• Multithreading applications may include:

o Reactive programming

� A WWW browser may be simultaneously performing a HTTP

GET request to get a Web page, playing an audio clip,

displaying the number of bytes received from some image,

and engaging in an advisory dialog with the user

o Maintaining high availability of services

� One object serves as a gateway interface to a service,

handling each request by constructing a new thread to

asynchronously perform the associated actions.

 Paul I. Lin

Java Multi-Thread Programming 122

o Providing Controllability

� Activities within threads can be suspended, resumed,

stopped by other authorized objects.

o Massive Parallelism

� One machine, multiple CPUs - improving performance

� One machine, one CPU – interleaving activities to avoid

delays

Properties of Single-Threaded Process

A Single-Threaded Process has the following properties

- The process begins execution at a well-known point, such as main()

function or method in C/C++ or Java

- Execution of the statements follows in a predetermined order

- Access certain data through stack for local variables, instance variables

(object reference), and static variables

Java Thread
A thread (or lightweight process) is a basic unit of CPU utilization which

consists of:

o A program counter

o Register set

o Stack space

• A thread shares with its peer threads its:

o Code section

o Data section

o Operating system resources

 Paul I. Lin

Java Multi-Thread Programming 123

Java Threads, JVM, and Host Operating System

• A typical Java application contains several threads and uses system level

threads in the JVM (Java Virtual Machine)

• The JVM is implemented on the top of a host operating system and maps

Java threads onto operating system level threads based on the running

platforms: multithreading models (Windows, Solaris, etc)

• Solaris offers two choices:

o Non-preemptive user level scheduling (many-to-one model called

green threads)

o Preemptive kernel level scheduling (many-to-many model)

Java Thread Creation and Management

• Java threads may be created by

o Extending Thread class

o Implementing the Runnable interface

• Managing or controlling threads can be achieved using the methods:

o start()

o sleep()

o wait()

o interrupt()

o notify()

o notifyall()

 Paul I. Lin

Java Multi-Thread Programming 124

Example 6-1: This example illustrates how to create a new threaded class and

test the thread class. The following steps are used to prepare this simple thread

example:

• Create a new class called Programmer, save it in the folder called

programmer

• Create a Programmer testing class called FirstProgrammer with main()

method

• Compile the FirstProgrammer class and run it

// Extending the Thread class

class Programmer extends Thread

{

public void run(){

for(int n = 0; n < 3; n++)

 System.out.println(“I am a Programmer Thread”);

 }

}

//

//

// Creating the Thread

public class FirstProgrammer

{

public static void main(String args[]) {

Programmer javaProgmmer = new Programmer();

javaProgrammer.start();

System.out.println(“I am the main thread”);

}

}

Results
I am the main thread

I am a Programmer Thread

I am a Programmer Thread

I am a Programmer Thread

 Paul I. Lin

Java Multi-Thread Programming 125

Example 6-2: This example shows the second way of creating a new thread

class through the Runnable interface.

/*
public interface Runnable{
public abstract void run();
}

*/

// JavaProgrammer.java
class JavaProgrammer implements Runnable{
public void run()
{
 System.out.println(“I am a Java Programmer2 Thread”);
}
}

//SecondProgrammer.java
public class SecondProgrammer
{
public static void main(String args[]) {
Runnable javaProgrammer = new JavaProgrammer();
Thread third = new Thread(javaProgrammer);
thrird.start();
System.out.println(“I am the main thread”);
}
}

Results:
I am the main thread

I am a Java Programmer2 Thread

 Paul I. Lin

Java Multi-Thread Programming 126

Basic Properties of Java Multithreading
A Java multithreading program has the following properties:

• Each thread executes code in the sequential fashion

• The main() method is a well-defined thread entry point for a stand-alone

program

• Threads can cooperate with each other through a variety of

synchronization mechanisms

• Simultaneous execution of threads are possible in multiprocessor

environments

• Static variables are automatically sharable to all threads in a Java

program

Types of Threads

• Kernel threads

• User threads

o Threads created by users

• Daemon threads

o Thread created internally by the Java API

o Run in the background

o Do not prevent a program from terminating

o Examples of daemon threads

� Garbage collector

 Paul I. Lin

Java Multi-Thread Programming 127

States of Threads
Every thread in the Java virtual machine can be in one of following four states:

• Initial state: A thread object is in the initial state from the period when it is

created (that is, its constructor is called) until the start() method of the

thread object is called.

• Runnable (ready) state: A thread is in the runnable state once its start()

method has been called. There are various ways in which a thread can

leave its runnable state, which can be thought of as a default state: if a

thread isn't in any other state, it's in the runnable state.

• Running state: A thread is in running state if the run() method begins

execution.

• Sleeping state: A thread is in sleeping state if the sleep() method is

invoked.

• Blocking state: A thread that is blocked is one that cannot be run because

it is waiting for some specific event to occur. A simple example is the case

of a thread that has opened a socket to some remote data server and

attempts to read data from that server when data is not available.

• Dead (exit) state: A thread is in the dead state once its run() method

returns (complete thread execution) or its interrupt() method has been

called.

 Paul I. Lin

Java Multi-Thread Programming 128

Ready/
Runnable

SleepingWaiting

Object

Dead Blocked

Runnung

Create new thread

Entering Blocking State:
y Thread.sleep(n);
y Blocking by input/output

operation;
y wait();
y th1 -> try to lock an locked

object

public void run()
{ try { ...
Thread.sleep(t);}
catch(InterruptedException e)
{..}}

Thread th1;
th1 = new Thread;
th1.start();

public synchronized int
getShard{
while(!available){
try{ statement; wait();}
catch(InterruptedException e){
statement;
notify();
//notifyall();}

Exiting Blocking State:
y Done sleeping;
y Finsihed I/O
y Done waiting;
y Wake up by notify(); or

notifyall();

Dead Thread:
y run() method exits normally
y The thread called

interrupt() method to throw
an InterruptedException
while the thread is sleeping
or waiting

y run() method terminated by
an uncaught exception

th1.yield()

Thread Life Cycle

• newly created

• start()

• run()

• isAlive()

• yield()

• sleep()

• interrupted()

 Paul I. Lin

Java Multi-Thread Programming 129

Java Concurrent Programming Support

• Through the classes:

o java.lang.Thread
o java.lang.Runnable interface

• Through methods: wait(0, notify(), notifyall() of the java.lang.Object

• Through the keywords (control execution of code):

o synchronized

o volatile

synchronized: this keyword is reserved for use as a Java method qualifier which

may apply to the situation when two or more threads are all in need to access the

same object but only one thread at a time can be granted access to the object.

This thread synchronization method can prevent a thread from interfere with one

another.

volatile: variables that are marked with this key word will be ignored in the

process of optimization

 Paul I. Lin

Java Multi-Thread Programming 130

Through the following monitoring methods defined in java.lang.Object, all Java

objects can be coordinated with such activities as hold locks across threads. Th

following methods can be used only in synchronized code blocks:

• wait()

• wait(long timeout)

• wait(long timeout, int nanosecond)
o A native method in C to release the lock prior to waiting for a

condition to occur

o There are three different overloaded methods

• notify()
o This method can only be use when it is acceptable to waking up or

resume any one of the thread that may be waiting and not to

resume the others non-waiting threads.

• notifyAll()
o A method for waking up all waiting threads.

o It is a good idea to use this method routinely.

Thread Methods:
Constructors:
Thread()
 // Default constructor for allocating a new Thread object

 // It will construct Thread with such names as Thread_1, Thread_2, etc

Thread(Runnable target)
 // Constructs a new thread object associated with the given Runnable

 // object.

Thread(Runnable target, String name)
 // Constructs a new thread associated with the given Runnable object and

 // with a given name.

Thread(String name)
 // Constructs a new thread associated with a given name.

 Paul I. Lin

Java Multi-Thread Programming 131

Thread(ThreadGroup group, Runnable target)
 // Constructs a new thread associated

Thread(ThreadGroup group, Runnable target, String name)
 // Constructs a new thread associated with a given name, and belongs to

 // the thread group referred by group

Thread(ThreadGroup group, String name)
 // Constructs a new thread object

Thread Methods:
static int activeCount()
 // Returns the number of threads in the program

void checkAccess()
 // Determines if the currently running thread has permission to modify this

 // thread

static Thread currentThread()
 // returns a thread object reference

static void dumpStack()
 // Prints a stack trace of the current thread

static int enumerate(Thread[] tarray)
 // Copies every active thread in the thread group and its subgroup into the

 // specified array

ClassLoader getContextClassLoader()
 // Returns the context ClassLoader for this Thread

String getName()
 // Gets the name of the thread instance

int getPriority()
 // Returns this thread name

ThreadGroup getThreadGroup()
 // Returns the thread group to which this thread belongs

void interrupt()
 // Interrupts this thread

 Paul I. Lin

Java Multi-Thread Programming 132

void interrupted()
 // Tests if the current thread has been interrupted

boolean isAlive()
 // Returns true if a thread has been started but has not terminated or killed

boolean isDaemon()
 // Determines if this thread is a daemon thread

void join()
 // Waits for the completion of the specified thread.

 // It returns as soon as the thread is considered not alive.

void join(long timeout)
 // Waits for the completion of the specified thread

 // It waits no longer than a timeout specified.

void join(long timeout, int nanos)
 // Waits for the completion of the specified thread

 // It waits no longer than a timeout specified.

void run()
 // The method enables the newly created method for execution. Similar

 // to main() method

void setContextClassLoader(ClassLoader cl)
 // Sets the ClassLoader for this Thread

void setDaemon(boolean on)
 // Marks this thread as either a daemon thread of a user thread

void setName(String name)
 // Changes the name of this thread to be equal to the argument name

void setPriority(int newPriority)
 // Changes the priority of this thread

static void sleep(long milliseconds)
 // Put current thread to sleep for the specified number of milliseconds.

 // This static method can be accesses through the Thread class name:

 // Thread.sleep(500) -- sleep for 0.5 second

 Paul I. Lin

Java Multi-Thread Programming 133

static void sleep(long milliseconds, int nanoseconds)
 // Puts current thread to sleep for the specified number of milliseconds and

 // nanoseconds.

 // This static method can be accesses through the Thread class name:

 // Thread.sleep(500) -- sleep for 0.5 second

void start()
 // Creates a new thread and cause a thread to call its run() method as an

 // independent activity.

String toString()
 // Returns a string representation of this thread, including the thread name,

 // priority, and thread group

static void yield()
 // Causes the currently executing thread object to temporarily pause and

 // allow other threads to execute.

 // yield() does not guarantee that another thread will execute.

Deprecation
 Thread.stop()

 Thread.resume()

 Thread.suspend()

 Runtime.runFinalizersOnExit

Thread Priorities
Rules

• If there are multiple runnable threads at any given time, the Java run-time

system will pick one with the highest priority.

• If there are more than one thread with the highest priority, it picks any

arbitrary one

• A running low-priority thread is preempted in favor of the higher-priority

 Paul I. Lin

Java Multi-Thread Programming 134

setPriority(int)

• Takes the priorities (from 0 to 10)

o Thread.MIN_PRIORITY (a constant of 1)

o Thread.NORM_PRIORITY (a constant of 5)

o Thread.MAX_PRIORITY (a constant of 10)

• Throw IllegalArgumentException

getPriority()

• Returns the thread's priority

Daemon Threads
void setDaemon(boolean on)

• Set a thread to run in the background

• must be set before the start() method is called or before an

IllegalThreadStateException is thrown

boolean isDaemon()

• Return true if a thread is a daemon thread

 Paul I. Lin

Java Multi-Thread Programming 135

Example 6-3: A clock display thread.
import java.lang.Thread;
import java.util.*;
public class ClockThread extends Thread
{
 boolean timing = true;

 public ClockThread()
 {
 super("clock");
 //setDaemon(true); // Date and Time Display will not shown
 }

 public void run()
 {
 while(timing)// Hit Ctrl C to stop
 {
 Date time = new Date();
 System.out.println(time);
 try{ Thread.sleep(1000); }
 catch(InterruptedException e) {}
 }
 }
}
class RunClock
{
 public static void main(String args[])
 {
 ClockThread timeThread = new ClockThread();
 timeThread.start();
 }
}
Results
Mon Jun 11 22:17:06 EST 2001
Mon Jun 11 22:17:07 EST 2001
Mon Jun 11 22:17:08 EST 2001
Mon Jun 11 22:17:09 EST 2001
Mon Jun 11 22:17:10 EST 2001

 Paul I. Lin

Java Multi-Thread Programming 136

Java Thread Synchronization and Scheduler
yield()

• Give other thread a chance to execute

sleep()

• Can throw a checked InterruptedException

• Must called in a try block

synchronized methods

• try block

• wait()

• notify()

o Notify a waiting thread to become ready

• notifyall()

o Notify all waiting threads to become ready

Issues and Limitations of Multithreading

• Safety: Race condition occurs when two or more threads may affect some

variables or outcome of a program.

• Liveness: Activities within concurrent programs may fail to be alive when

threads are deadlocked as results of unintended interaction among

threads. When preparing multi-threading programs, one must ensure all

thread objects can maintain consistent running through synchronization

mechanisms or structural exclusion techniques.

• Nondeterminism: The thread completion time is non-determinism since

threads may be arbitrarily interleaved, hard to predict, understand and

debug.

• Performance: Using threads do not automatically improve performance.

The performance may be poorer due to the overhead involved in creating

threads, switching context between threads, synchronizing threads, and

so on.

 Paul I. Lin

Java Multi-Thread Programming 137

Thread Liveness
Contention

• A thread is in a runnable state and fails to run

• Starvation or indefinite postponement

Dormancy

• A non-runnable thread fails to become runnable

• May be: when a wait() is never balanced by a notify() or notifyall()

Deadlock

• Two or more threads block each other while trying to access a

synchronized locked object

Premature termination

• A thread is killed or terminated before it should be

Example 6-4: A deadlock example.

/* DeadLock2T.java

 *

 * Hit Ctrl C to exit the program and the virtual machine.

 *

 */

public class DeadLock2T {

 public static void main(String[] args) {

 final Object res_1 = "resource1";

 final Object res_2 = "resource2";

 // First thread

 Thread thread_1 = new Thread() {

 public void run() {

 // Lock resource 1

 synchronized(res_1) {

 System.out.println("Thread_1: locked resource 1");

 try { Thread.sleep(50); } catch (InterruptedException e) {}

 // wait utill a lock for resource 2 is available

 Paul I. Lin

Java Multi-Thread Programming 138

 synchronized(res_2) {

 System.out.println("Thread 1: locked resource 2");

 }

 }

 }

 };

 // Second thread

 Thread thread_2 = new Thread() {

 public void run() {

 // Lock resource 2

 synchronized(res_2) {

 System.out.println("Thread_2: locked resource 2");

 try { Thread.sleep(50); } catch (InterruptedException e) {}

 // wait utill a lock for resource 1 is available

 synchronized(res_1) {

 System.out.println("Thread 2: locked resource 1");

 }

 }

 }

 };

 // Start the two threads; Deadlock will occur;

 // The program will never exit.

 thread_1.start();

 thread_2.start();

 }

}

Results
Thread_1: locked resource 1

Thread_2: locked resource 2

 Paul I. Lin

Java Multi-Thread Programming 139

Communication between Threads

• Through a locked object

• Through pipes:

o PipedInputStream, PipedOutputStream classes

o PipedReader, PipedWriter classes

Synchronization Methods for Preventing Errors in Multi-Thread
Programming
 There are various solutions for preventing errors in multi-threading program:

• Semaphores: A programming model developed by E. W. Dijkstra in the

1960s:

o Guarding a single rail road track over which only one train at a time

is allowed

o A train must wait before entering the track until the semaphore is in

the permission state

o A train leave this track must change the state of the semaphore to

allow other train to enter

• Mutually Exclusive Locks (mutex locks)

• Read/Write Shared Memory (shared/exclusive) locks

• Flag

• Message Queues

The message queues, semaphores, and shared memory are provided in many

modern operating systems for inter-process communications for passing data

among different threads. While in Java multi-threading, the emphasis is placed

on synchronization, rather than communication.

 Paul I. Lin

Java Multi-Thread Programming 140

Objects used in Concurrent/Multithreading Programming
Immutable objects

• Immutabbility Avoiding state change

• final

Fully synchronized objects

• Synhronization: Dynamically ensuring exclusive access

• Read/Write conflicts

• Write/Write conflicts

Partial Synchronization

• An object may posses both mutable and immutable instance variables

Monitor Method

• Thread synchronization is used in this method ensure that only one thread

at a time can access an object

• This is sometime refers as synchronization LOCK for target object

• The LOCK is set to true (or 1 for inaccessible: target object is locked) or

false (or 0 for accessible; target object is released)

• Use synchronized modifier to prevent unintended interaction among

threads

• A boolean variable (accessible, readable, writeable, etc) is used as a lock

for access control

• Can contain a wait(), which suspends the current thread

• notify() is used to wake up a waiting thread

• notifyall() is used to wake up all waiting threads

 Paul I. Lin

Java Multi-Thread Programming 141

public synchronized void turn()

 {

 turnToUse = this;

 notifyall(); // signal thread waiting in the run() method

 }

public synchronize void run()

{

while(1)

 {

 while(turnToUse != this) // wait until its my turn

 {

 try{

 wait();

 }

 catch(InterruptedException ex)

 {

 return;

 }

 // take turn

 // do something/nothing

 }

 Paul I. Lin

Java Multi-Thread Programming 142

Example 6-5: Producer Consumer Problem

This example gives a java solution for an unsynchronized producer/consumer

problem. Four classes are created:

• MessageBox for holding the shared message

• Producer for generating the message

• Consumer for receiving the message

• Server for holding and organizing the Producer, Consumer, and

MessageBox activities

Producer

y private
MessageBox;

y Generating n
message;

Consumer

y private
MessageBox;

y Recieving n
message;

MesssageBox

y private
sharedMsg;

y setSharedMsg()
y getShaerdMsg()

Server.java

1, 2, 3, ... 1, 2, 3, ...

Server
// Server.java

public class Server {

 public static void main(String args[]) {

 MessageBox mailBox = new MessageBox();

 Producer producerThread = new Producer(mailBox);

 Consumer consumerThread = new Consumer(mailBox);

 producerThread.start();

 consumerThread.start();

 }

}

 Paul I. Lin

Java Multi-Thread Programming 143

Shared Message Box
// MessageBox.java

public class MessageBox

{

 private int sharedMsg = -1;

 public void setSharedMsg(int msg)

 {

 System.err.println(Thread.currentThread().getName()+ " setting

 message " + msg);

 sharedMsg = msg;

 }

 public int getSharedMsg()

 {

 System.err.println(Thread.currentThread().getName()+ " receiving

 message " + sharedMsg);

 return sharedMsg;

 }

}

Producer Thread
//Producer.java

class Producer extends Thread

{

 // Using a message box objects

 private MessageBox mbox;

 // Constructor

 public Producer(MessageBox m)

 { super("Producer");

 mbox = m;

 }

 public void run()

 {

 int n = 0;

 while (n < 5)

 {

 try{

 Thread.sleep((int)(Math.random() * 2000));

 }

 catch(InterruptedException e)

 {

 System.err.println(e.toString());

 }

 Paul I. Lin

Java Multi-Thread Programming 144

 // produce an item & send it into the buffer

 mbox.setSharedMsg(n);

 n++;

 }

}}

Consumer Thread

// Consumer.java

class Consumer extends Thread

{

 // Using a message box objects

 private MessageBox mbox;

 // Constructor

 public Consumer(MessageBox m)

 {

 super("Producer");

 mbox = m;

 }

 public void run()

 { int n, total=0;

 do{

 try{ Thread.sleep((int)(Math.random() * 2000)); }

 catch(InterruptedException e)

 { System.err.println(e.toString()); }

 // consume the message

 n = mbox.getSharedMsg();

 total += n;

 } while(n != 4);

 System.err.println(getName() + " receiving total values: " +

 total + "\n and is now terminating " + getName());

 }

}

Trial # 1
Producer receiving message -1
Producer receiving message -1
Producer receiving message -1
Producer setting message 0
Producer setting message 1
Producer receiving message 1
Producer receiving message 1
Producer receiving message 1

 Paul I. Lin

Java Multi-Thread Programming 145

Producer receiving message 1
Producer setting message 2
Producer setting message 3
Producer receiving message 3
Producer setting message 4
Producer receiving message 4
Producer receiving total values: 8
 and is now terminating Producer
Trial #2
Producer setting message 0
Producer receiving message 0
Producer receiving message 0
Producer receiving message 0
Producer setting message 1
Producer receiving message 1
Producer receiving message 1
Producer setting message 2
Producer receiving message 2
Producer setting message 3
Producer receiving message 3
Producer setting message 4
Producer receiving message 4
Producer receiving total values: 11
 and is now terminating Producer

Example 6-6: Producer Consumer Problem (synchronized method and a
message flag solution)

This example gives a java solution for an unsynchronized producer/consumer

problem. Four classes are created:

• SyncMessageBox for holding the shared message; synchronized method

and a message ready flag is used for communication

• Producer for generating the message

• Consumer for receiving the message

• Server for holding and organizing the Producer, Consumer, and

SyncMessageBox activities

 Paul I. Lin

Java Multi-Thread Programming 146

Producer

y private
SyncMessageBox

y Generating n
message;

Consumer

y private
SyncMessageBox

y Recieving n
message;

SyncMessageBox

y private
msgReady
sharedMsg;

y setSharedMsg()
y getShaerdMsg()

Server.java

1, 2, 3, ... 1, 2, 3, ...

Server
// Server.java
public class Server {
 public static void main(String args[])
 {
 SyncMessageBox mBox = new SyncMessageBox();
 Producer producerThread = new Producer(mBox);
 Consumer consumerThread = new Consumer(mBox);
 producerThread.start();
 consumerThread.start();
 }
}

 Paul I. Lin

Java Multi-Thread Programming 147

Synchronized Message Box
public class SyncMessageBox

{

 private int sharedMsg = -1;

 private boolean msgReady = true;

 public synchronized void setSharedMsg(int msg)

 {

 while(!msgReady)

 {

 try{ wait(); }

 catch(InterruptedException e)

 { e.printStackTrace(); }

 }

 System.err.println(Thread.currentThread().getName()+ "

 setting message " + msg);

 sharedMsg = msg;

 //

 //

 msgReady = false;

 notify();

 }

 public synchronized int getSharedMsg()

 {

 while(msgReady)

 {

 try{ wait(); }

 catch(InterruptedException e)

 { e.printStackTrace(); }

 }

 msgReady = true;

 notify();

 System.err.println(Thread.currentThread().getName()+ "

 receiving message " + sharedMsg);

 return sharedMsg;

 }

}

 Paul I. Lin

Java Multi-Thread Programming 148

Producer Thread
//Producer.java

class Producer extends Thread

{

 // Using a message box objects

 private SyncMessageBox mbox;

 // Constructor

 public Producer(SyncMessageBox m)

 { super("Producer");

 mbox = m;

 }

 public void run()

 {

 int n = 0;

 while (n < 5){

 try{

 Thread.sleep((int)(Math.random() * 2000));

 }

 catch(InterruptedException e)

 {

 System.err.println(e.toString());

 }

 // produce an item & send it into the buffer

 mbox.setSharedMsg(n);

 n++;

 }

}

}

Consumer Thread
// Consumer.java

class Consumer extends Thread

{

 // Using a message box objects

 private SyncMessageBox mbox;

 // Constructor

 Paul I. Lin

Java Multi-Thread Programming 149

 public Consumer(SyncMessageBox m)

 {

 super("Producer");

 mbox = m;

 }

 public void run()

 {

 int n, total=0;

 do{

 try{ Thread.sleep((int)(Math.random() * 2000)); }

 catch(InterruptedException e)

 { System.err.println(e.toString()); }

 // consume the message

 n = mbox.getSharedMsg();

 total += n;

 } while(n != 4);

 System.err.println(getName() + " receiving total values: " +

 total + "\n and is now terminating " + getName());

 }

}

 Paul I. Lin

Java Multi-Thread Programming 150

Testing Result
Producer setting message 0

Producer receiving message 0

Producer setting message 1

Producer receiving message 1

Producer setting message 2

Producer receiving message 2

Producer setting message 3

Producer receiving message 3

Producer setting message 4

Producer receiving message 4

Producer receiving total values: 10

 and is now terminating Producer

 Paul I. Lin

Java Multi-Thread Programming 151

javax.swing.Timer
We may use Timer to cause an action to occur at a predefined rate. Each Timer

has a list of ActionListeners and a delay time between actionPerformed() calls.

public class Timer extends Object implements Serializable

Timer(int delay, ActionListener listener)

 // delay in milliseconds, between event notification

protected void fireActionPerformed(ActionEvent e)

int getDelay()

 // Return Timer's delay

int getInialDelay()

 // Return the Timer's initial delay

EventListener getListeners(Class listener Type)

static boolean getLogTimers()

boolean isCoalesce()

 // Returns true if the Timer coalesces multiple pending performCommand()

 // message

boolean isRepeats()

 // Returns true if the Timer will send a actionPerformed() message

 // to its listeners multiple times

boolean isRunning()

 // Return true if the Timer if running

void removeActionListener(ActionListener listener)

void restart()

 // Restart a Timer, canceling any pending firings; the initial delay is used

void setCoalesce(boolean flag)

 // Sets whether the Timer coalesces multiple pending ActionEvent firing

void setDelay(int delay)

 // Set the Timer's delay, milliseconds between successive

actionPerformed() messages to its listeners.

void setInitialDelay(int iniDelay)

 Paul I. Lin

Java Multi-Thread Programming 152

void setRepeats(boolean flag)

void start()

 // Start the timer

void stop()

 // Stop the timer

Thread Scheduling

On a uniprocessor system:

• Only one thread can run at any given time.

• The thread execution order depends on

o the scheduling policies, and

o priorities of the threads.

• Given a set of threads with fixed priorities such as the previous list, their

execution behavior is typically predictable.

In a multiprocessor system:

• The execution behavior is much less determinable.

• Although the four threads have differing priorities, a 4-processor SMP

system may execute all four simultaneously.

It is very important to know how to Java threads are schedule threads when one

or more threads are CPU-intensive over a long period of time.

Thread Scheduling Methods
Assume a program has four threads, called A, B, C, and D. Priorities have been

defined:

• D minimum priority

• C middle priority

• B middle priority

• A maximum

Cooperating versus Preemptive

 Paul I. Lin

Java Multi-Thread Programming 153

• Short-term scheduler invoked after interrupt handled because running

process terminated or blocked to give opportunity for

• Preemption

=> e.g., another process arrives at ready queue

=> e.g., allocated time-slice expired

=> running process returns to ready queue

• How does a JVM schedule threads?

o Preemptive: time-slicing is optional

o Cooperative multitasking

� Thread.yield()

� Prioritized :

Thread.MIN_PRIORITY

Thread.NORM_PRIORITY

Thread.MAX_PRIORITY

� May be changed dynamically with setPriority(n)

Many thread scheduling methods are available:

• Fist-In-First-Out (FIFO)

• Round Robin Scheduling

o Throughput (default) Scheduling (Non-equal time slot)

Fist-In-First-Out (FIFO) Scheduling

• Assume four non-priority threads A, B, C, and D are waiting in a FIFO

queue

• Threads executed in the following order:

o D -> B -> C -> A

o Thread D executes until it waits or terminates

o Then, Thread B starts since it has been waiting longer than Thread

C

o Then, Thread C, Thread A

 Paul I. Lin

Java Multi-Thread Programming 154

Throughput (default) Scheduling

• All threads are time sliced with non-equal time slot

• In the JVM thread specification:" .. threads of the same priority are *NOT*

guaranteed to be time-sliced"

• Consider to assign the busy thread with a lower priority

• Thread priority: A, [B, C], D

• Thread D is the lowest priority

• Threads Executes:

o A -> C -> B -> D -> B -> C

• Thread A receives less execution time than the rest of threads and

protects Threads A against being blocked from executing indefinitely

• Prevent the problem starvation or deadlock

Round Robin Scheduling (Scheduling Threads with Different Priority)

• Scheduling with Thread Priority

• Timer-based scheduling event: Need some sorts of periodic timer

• Timer thread wakes up, it become running thread; also adjusts the lists of

threads the priority

setPriority(int)

• Takes the priorities (from 0 to 10)

o Thread.MIN_PRIORITY (a constant of 1)

o Thread.NORM_PRIORITY (a constant of 5)

o Thread.MAX_PRIORITY (a constant of 10)

o Compute other priorities

� PRI_OTHER_NORM = (PRI_OTHER_MAX +

PRI_OTHER_MIN) / 2

� You should avoid using integer number for priority directly

since the number may change from implementation to

implementation

 Paul I. Lin

Java Multi-Thread Programming 155

• Throw IllegalArgumentException

getPriority()

• Returns the thread's priority

ThreadGroup (java.lang.ThreadGroup)

• Programs contain many threads

• Threads can be grouped by functionality

• Every Java thread belongs to some ThreadGroup and is allowed to

access information about its thread group

• Every Thread may be constrained and controlled through the methods of

ThreadGroup

java.lang.ThreadGroup
public class ThreadGroup extends Object

ThreadGroup(String name)

ThreadGroup(ThreadGroup parent, String name)

int activeCount()

 // returns an estimate number of active threads

int activeGroupCount()

 // returns an estimate number of active groups

void checkAccess()

 // determine if the current running thread has permission to modify this

 // thread group

void destroy()

 // destroys this thread group and all its subgroups

int enumerate(Thread[] list)

 // copies every active thread in this thread group and its subgroups into

 // the specified array

int enumerate(Thread[] list, boolean recurse)

 // copies every active thread in this thread group into the specified array

 Paul I. Lin

Java Multi-Thread Programming 156

int enumerate(ThreadGroup[] list)

 // copies every active subgroup in this thread group into the specified array

 // reference

int enumerate(ThreadGroup[] list, boolean recurse)

 // copies every active subgroup in this thread group into the specified

 // array references

int getMaxPriority()

 // returns the maximum priority of this thread group

String getName()

 // returns the name of this thread group

ThreadGroup getParent()

 // returns the parent of this thread group

void interrupt()

 // interrupts all threads in this thread group

boolean isDaemon()

 // tests if this thread group is a daemon thread group

boolean isDestroyed()

 // tests if this thread group has been destroyed

void list()

 // prints information about this thread group to the standard output

boolean parentOf(ThreadGroup g)

 // Tests if this thread group is either the thread group argument or one of

 // its ancestor thread groups

void setDaemon(boolean daemon)

 // change the daemon status of this thread group

void setMaxPriority(int priority)

 // sets the maximum priority of the group

String toString()

 // returns a string representation of this Thread group

void uncaughtException(Thread t, Throwable e)

 // called by the JVM when a thread in this thread group stops because of

 Paul I. Lin

Java Multi-Thread Programming 157

 // an uncaught exception

listAllThreads

An example:

 // Create a new thread group

 String gName = "BrowserGroup";

 ThreadGroup g = new ThreadGroup(gName);

 // Add a thread to the group

 Thread t = new Thread(g, gName);

 // To interrupt all thread in the group

 g.interrupt();

 // To examine if the group are still runnable

 if(g.activeCount() != 0)

 {

 // Some threads are still runnable

 }

 else

 {

 // All threads are stopped

 }

Arrays of Threads

Because threads are defined as a class and Java permits arrays of a class, it is

possible to construct and reference arrays of threads. The following example

shows how to construct an array of 10 threads, each bouncing a ball. Each

thread executes independently with no shared data (other than access to the

display) requiring synchronization. Note that each execution results in one thread

gaining or losing ground to the other. There is no implicit order of execution

which is consistent with the non-deterministic nature of thread execution.

 Paul I. Lin

	Responsiveness
	Resource sharing
	Economy
	Utilization of Multiprocessor Architecture
	Cooperation of multiple threads in same job or task may achieve higher throughput and improved performance.
	Multithreading applications may include:
	Each thread executes code in the sequential fashion
	The main() method is a well-defined thread entry point for a stand-alone program
	Issues and Limitations of Multithreading
	Arrays of Threads

