
CPET 565/CPET 499 Mobile Computing Systems
Lecture Note 9
Sept. 29, 2014

The Android Developer’s Cookbook, 2nd edition

 Chapter 3 Threads, Handlers, Alerts, Services, and Broadcast Receivers

Threads

 Every application by default runs a single process upon creation that contains all the tasks. To
avoid hanging the UI, time consuming tasks, such as network downloads or computationally
intensive calculations, should reside in a background thread.

 Class Thread extends Object Implements Runnable,
http://developer.android.com/reference/java/lang/Thread.html

o A Thread is a concurrent unit of execution.
o It has its own call stack for methods being invoked, their arguments and local variables.
o Each application has at least one thread running when it is started, the main thread, in

the main ThreadGroup.
o The runtime keeps its own threads in the system thread group.

 Methods
o Start a thread: start()
o Put a thread to sleep: sleep()
o Pause/Rusume a thread: onPause(); onResume; paused = false, paused = true … FLAG
o Thread priority:

 Thread.MIN_PRIORITY == 1; Thread.MAX_PRIORITY == 10;
 Android.os.Process.setThreadPriority()

o Cancelling/Killing a Thread:
 Stop() .. deprecated because it might leave the application in a unpredictable

state
 interrupt() method
 setDaemon(true) … Declare all spawned thread as daemon thread and ensure

that threads associated with the application are killed when the application’s
main thread is killed.

 PUT while (stillRunning) loop in the run() method and externally stillRunning =
false to kill the thread.

Handlers

 A main thread (time-critical thread)  background thread (time consuming thread)

 Handlers
o Objects for sending messages between threads
o Each handler is bound to a single thread, delivering message to it and executing

commands from it

 Class Handler extends Object,
http://developer.android.com/reference/android/os/Handler.html

o A Handler allows you to send and process Messages and Runnable Objects associated
with a thread’s MessageQueue

o Known Direct Subclasses:

http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/android/os/Handler.html

 AsyncQueryHandler
 AsyncQueryHandler.WorkerHandler
 HttpAuthHandler
 SslErrorHandler

Alerts

 Provides a quick message to the user outside the application’s main UI.

 It can be in an overlay window: such as “a toast alert” or “AlertDialog” box
o Toaster alert: a printed message to the screen with a single line of code; equivalent to

printf() in C programs; can be used as a debug tool

 It can also be in the “notification bar” at the top of the screen

 Class AletDialog extends Dialog implements DialogInterface,
http://developer.android.com/reference/android/app/AlertDialog.html

Services

 Class Services extends ContextWarpper implements ComponentCallbacks,
http://developer.android.com/reference/android/app/Service.html

 A service is an Android component that runs in the background, do short-lived tasks with a low-
priority, without user interaction.

o It can be started and stopped by an components

 Foreground service is supported, but this requires setting a mandatory ongoing notification in
the “notification bar” so the user is informed about a service taking priority.

 IntentService class.. is a service that holds a “QUEUE” of intent it has received and executed
them one by one.

o This is an ideal worker thread for many background tasks likes
 Polling servers for new information or downloading large amount of data

 Examples
o Activity => UI for select music files => start a service to play back the files
o Activity => UI to upload a set of picture to a website
o A broadcast receiver receives a message that a picture was taken and launches a service

to upload the new picture to a website.

Broadcast Receivers

 Class BroadcastReceiver extends Object,
http://developer.android.com/reference/android/content/BroadcastReceiver.html

 A broadcast receiver listens for relevant broadcast messages to trigger an event.

 Some examples of broadcast events already sent from the OS are
o The camera button was pressed.
o The battery is low.
o A new application was installed.

 A user-generated component can also send a broadcast, such as
o A calculation was finished.
o A particular thread has started.

Chapter 3: Developer Cook Book Examples – Recipes
Threads

 Recipe: Launching a Second Thread: Listing 3-2, pp. 54-55

http://developer.android.com/reference/android/app/AlertDialog.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

 Recipe: Creating a Runnable Activity, Listing 3-3, pp. 55-56

 Recipe: Setting a Thread’s Priority, pp. 56

 Recipe: Cancelling a Thread, pp. 57

 Recipe: Sharing a Thread Between Two Applications, pp. 57-58

Messages between Threads: Handlers
 A main thread (time-critical thread)  background thread (time consuming thread)

 Handlers
o Objects for sending messages between threads
o Each handler is bound to a single thread, delivering message to it and executing

commands from it

 Recipe: Scheduling a Runnable Task from the Main Thread; Listings 3.4, 3.5, pp. 58-60
o Timer … running as a background thread so it does not block the UI thread
o UI thread … needs update whenever the time changes
o The handler mHandler is created and used to QUEUE the runnable object

mUpdateTimeTask
private Handler mHandler = new Handler();
if (mStartTime == 0L){…
mHandler.remov

o Perform recursive call in the task itself continues to update the time every 200 ms.
mHandler.postDelayed(this, 200)

 Recipe: Using a Countdown Timer; Listing 3.6, pp. 60-61
import android.os.CountDownTimer
…
new CountDownTimer (3000,1000); // two arguments: total time duration, or time
interval to process onTick()
onTick() method

 Recipe: Handling a Time-Consuming Initialization; Listings 3.7, 3.8, pp. 61-63
o Loading splash screen specified in: res/layout/loading.xml

<LinearLayout …
<TextView …
 Android:text = “Loading…”

</LinearLayout>
o initializaArrays() … running in background

public class HandleMessage extends Activity implements Runnable{ …
 //
 Thread thread = new Thread(this);
 Thread.start();

Alerts
 Recipe: Using Toast to Show a Brief Message on the Screen, pp. 63-64

 Recipe: Using an AlertDialog Box, Listing 3.9, pp. 64-65
o AlertDialog class

 Recipe: Showing Notification in the Status Bar; Listings 3.10, 3.11, and 3.12, pp. 65-69

Services
 Recipe: Creating a Self-Contained Service (with a single components); Listings 3.13, 1.14, 3.15,

pp. 70-74
o Service Lifecylce: http://developer.android.com

http://developer.android.com/

o AndroidManifest.xml
 <service android:name=”myService”></service>

o Override onCreate(), onDestroy()
o Override onBind()
o startService(), stopService()

 Recipe: Adding a WakeLock; Listing 3.17, 3.18, pp. 74-77
o WakeLock Type: (CPU, Screen, Hardware)

 PARTICL_WAKE_LOCK: on, off, off
 SCREEN_DIM_WAKE_LOCK: on, dimmed, off
 SCREEN_BRIGHT_WAKE_LOCK: on, bright, off
 FULL_WAKE_LOCK: on, bright, bright, bright

o PowerManager class
o Context.getSystemService(Context, PowerService)
o Create a new WakeLock instance

 powerManager.mWakeLock =
powerManager.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
LOG_TAG)

o setWakeLock()
o releaseWakeLock()
o To activate WakeLOck … mWakeLock.acquire()
o To release WakeLocks

 mWakeLock.isHeld()
 mWakeLock.release()

 Recipe: Using a Foreground Service, Listing 3.19, pp. 77-79
o Activating the foreground service:

 onStart()
 startForeground(NOTIFICATION_ID, getForegroundNottification());

o Stopping foreground service:
 onDestroy()
 stopForeground(true)

 to remove notification

 Recipe: Using an IntentService, Listing 3.20, 3.21, and 3.22
o intentService class
o IntentQueue … EMPTY/FULL
o handleIntent()
o intent.getStringExtra(“msg”);

Broadcast Receivers
 Recipe: Starting a Service when the Camera Button is Pressed; Listings 3.23, 3.24, 3.25, pp. 83-

85

