
CPET 565/CPET 499 Mobile Computing Systems
Lecture Note 9
Sept. 29, 2014

The Android Developer’s Cookbook, 2nd edition

 Chapter 3 Threads, Handlers, Alerts, Services, and Broadcast Receivers

Threads

 Every application by default runs a single process upon creation that contains all the tasks. To
avoid hanging the UI, time consuming tasks, such as network downloads or computationally
intensive calculations, should reside in a background thread.

 Class Thread extends Object Implements Runnable,
http://developer.android.com/reference/java/lang/Thread.html

o A Thread is a concurrent unit of execution.
o It has its own call stack for methods being invoked, their arguments and local variables.
o Each application has at least one thread running when it is started, the main thread, in

the main ThreadGroup.
o The runtime keeps its own threads in the system thread group.

 Methods
o Start a thread: start()
o Put a thread to sleep: sleep()
o Pause/Rusume a thread: onPause(); onResume; paused = false, paused = true … FLAG
o Thread priority:

 Thread.MIN_PRIORITY == 1; Thread.MAX_PRIORITY == 10;
 Android.os.Process.setThreadPriority()

o Cancelling/Killing a Thread:
 Stop() .. deprecated because it might leave the application in a unpredictable

state
 interrupt() method
 setDaemon(true) … Declare all spawned thread as daemon thread and ensure

that threads associated with the application are killed when the application’s
main thread is killed.

 PUT while (stillRunning) loop in the run() method and externally stillRunning =
false to kill the thread.

Handlers

 A main thread (time-critical thread) background thread (time consuming thread)

 Handlers
o Objects for sending messages between threads
o Each handler is bound to a single thread, delivering message to it and executing

commands from it

 Class Handler extends Object,
http://developer.android.com/reference/android/os/Handler.html

o A Handler allows you to send and process Messages and Runnable Objects associated
with a thread’s MessageQueue

o Known Direct Subclasses:

http://developer.android.com/reference/java/lang/Thread.html
http://developer.android.com/reference/android/os/Handler.html

 AsyncQueryHandler
 AsyncQueryHandler.WorkerHandler
 HttpAuthHandler
 SslErrorHandler

Alerts

 Provides a quick message to the user outside the application’s main UI.

 It can be in an overlay window: such as “a toast alert” or “AlertDialog” box
o Toaster alert: a printed message to the screen with a single line of code; equivalent to

printf() in C programs; can be used as a debug tool

 It can also be in the “notification bar” at the top of the screen

 Class AletDialog extends Dialog implements DialogInterface,
http://developer.android.com/reference/android/app/AlertDialog.html

Services

 Class Services extends ContextWarpper implements ComponentCallbacks,
http://developer.android.com/reference/android/app/Service.html

 A service is an Android component that runs in the background, do short-lived tasks with a low-
priority, without user interaction.

o It can be started and stopped by an components

 Foreground service is supported, but this requires setting a mandatory ongoing notification in
the “notification bar” so the user is informed about a service taking priority.

 IntentService class.. is a service that holds a “QUEUE” of intent it has received and executed
them one by one.

o This is an ideal worker thread for many background tasks likes
 Polling servers for new information or downloading large amount of data

 Examples
o Activity => UI for select music files => start a service to play back the files
o Activity => UI to upload a set of picture to a website
o A broadcast receiver receives a message that a picture was taken and launches a service

to upload the new picture to a website.

Broadcast Receivers

 Class BroadcastReceiver extends Object,
http://developer.android.com/reference/android/content/BroadcastReceiver.html

 A broadcast receiver listens for relevant broadcast messages to trigger an event.

 Some examples of broadcast events already sent from the OS are
o The camera button was pressed.
o The battery is low.
o A new application was installed.

 A user-generated component can also send a broadcast, such as
o A calculation was finished.
o A particular thread has started.

Chapter 3: Developer Cook Book Examples – Recipes
Threads

 Recipe: Launching a Second Thread: Listing 3-2, pp. 54-55

http://developer.android.com/reference/android/app/AlertDialog.html
http://developer.android.com/reference/android/app/Service.html
http://developer.android.com/reference/android/content/BroadcastReceiver.html

 Recipe: Creating a Runnable Activity, Listing 3-3, pp. 55-56

 Recipe: Setting a Thread’s Priority, pp. 56

 Recipe: Cancelling a Thread, pp. 57

 Recipe: Sharing a Thread Between Two Applications, pp. 57-58

Messages between Threads: Handlers
 A main thread (time-critical thread) background thread (time consuming thread)

 Handlers
o Objects for sending messages between threads
o Each handler is bound to a single thread, delivering message to it and executing

commands from it

 Recipe: Scheduling a Runnable Task from the Main Thread; Listings 3.4, 3.5, pp. 58-60
o Timer … running as a background thread so it does not block the UI thread
o UI thread … needs update whenever the time changes
o The handler mHandler is created and used to QUEUE the runnable object

mUpdateTimeTask
private Handler mHandler = new Handler();
if (mStartTime == 0L){…
mHandler.remov

o Perform recursive call in the task itself continues to update the time every 200 ms.
mHandler.postDelayed(this, 200)

 Recipe: Using a Countdown Timer; Listing 3.6, pp. 60-61
import android.os.CountDownTimer
…
new CountDownTimer (3000,1000); // two arguments: total time duration, or time
interval to process onTick()
onTick() method

 Recipe: Handling a Time-Consuming Initialization; Listings 3.7, 3.8, pp. 61-63
o Loading splash screen specified in: res/layout/loading.xml

<LinearLayout …
<TextView …
 Android:text = “Loading…”

</LinearLayout>
o initializaArrays() … running in background

public class HandleMessage extends Activity implements Runnable{ …
 //
 Thread thread = new Thread(this);
 Thread.start();

Alerts
 Recipe: Using Toast to Show a Brief Message on the Screen, pp. 63-64

 Recipe: Using an AlertDialog Box, Listing 3.9, pp. 64-65
o AlertDialog class

 Recipe: Showing Notification in the Status Bar; Listings 3.10, 3.11, and 3.12, pp. 65-69

Services
 Recipe: Creating a Self-Contained Service (with a single components); Listings 3.13, 1.14, 3.15,

pp. 70-74
o Service Lifecylce: http://developer.android.com

http://developer.android.com/

o AndroidManifest.xml
 <service android:name=”myService”></service>

o Override onCreate(), onDestroy()
o Override onBind()
o startService(), stopService()

 Recipe: Adding a WakeLock; Listing 3.17, 3.18, pp. 74-77
o WakeLock Type: (CPU, Screen, Hardware)

 PARTICL_WAKE_LOCK: on, off, off
 SCREEN_DIM_WAKE_LOCK: on, dimmed, off
 SCREEN_BRIGHT_WAKE_LOCK: on, bright, off
 FULL_WAKE_LOCK: on, bright, bright, bright

o PowerManager class
o Context.getSystemService(Context, PowerService)
o Create a new WakeLock instance

 powerManager.mWakeLock =
powerManager.newWakeLock(PowerManager.PARTIAL_WAKE_LOCK,
LOG_TAG)

o setWakeLock()
o releaseWakeLock()
o To activate WakeLOck … mWakeLock.acquire()
o To release WakeLocks

 mWakeLock.isHeld()
 mWakeLock.release()

 Recipe: Using a Foreground Service, Listing 3.19, pp. 77-79
o Activating the foreground service:

 onStart()
 startForeground(NOTIFICATION_ID, getForegroundNottification());

o Stopping foreground service:
 onDestroy()
 stopForeground(true)

 to remove notification

 Recipe: Using an IntentService, Listing 3.20, 3.21, and 3.22
o intentService class
o IntentQueue … EMPTY/FULL
o handleIntent()
o intent.getStringExtra(“msg”);

Broadcast Receivers
 Recipe: Starting a Service when the Camera Button is Pressed; Listings 3.23, 3.24, 3.25, pp. 83-

85

