CPET 581/499 Cloud Computing: Technologies and Enterprise IT Strategies

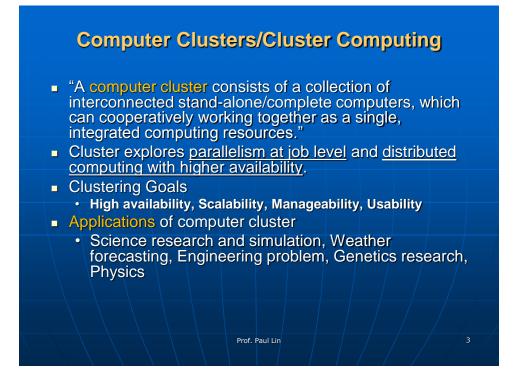
Lecture 3

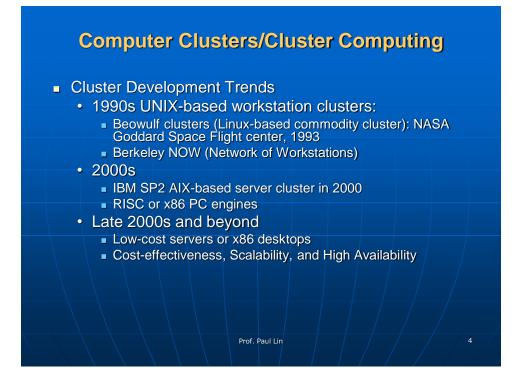
Computer Clusters for Scalable High Throughput and High Performance Computing

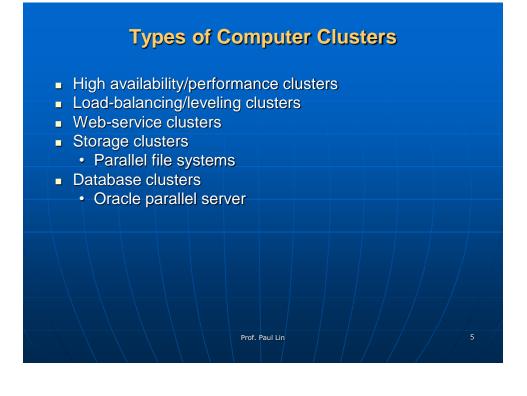
Reference: Chapter 2. Computer Cluster for Scalable Parallel Computing of the Text Book: <u>Distributed and Cloud Computing</u>, by K. Hwang, G C. Fox, and J.J. Dongarra, published Elsevier/Morgan Kaufmann, 2012.

Spring 2015

A Specialty Course for Purdue University's M.S. in Technology Graduate Program: IT/Advanced Computer App Track


Paul I-Hai Lin, Professor

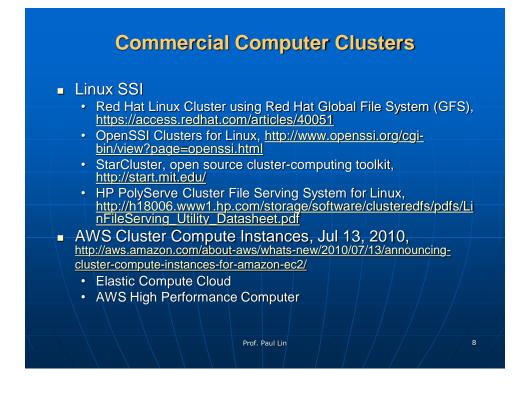

Dept. of Computer, Electrical and Information Technology


Purdue University Port Wayne Campus

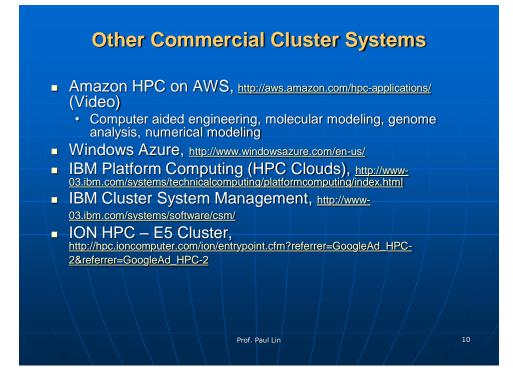
Topics of Discussion

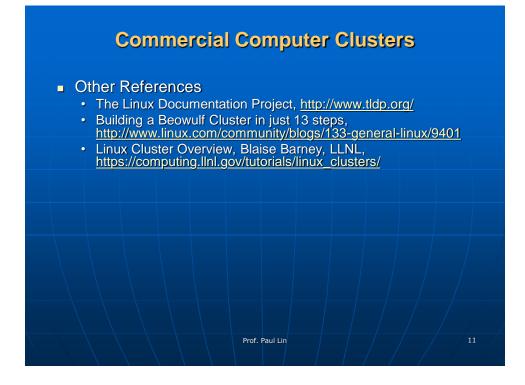
- Computer Clusters
- Examples of Computer Clusters
- Benefits and Opportunities
- Design Objectives and Issues of Computer Clusters
- Cluster Interconnects
- Cluster Computing in the Cloud
- High Availability through Redundancy
- Commercial Cluster Systems

Project	Special Features That Support Clustering
DEC VAXcluster (1991)	A UNIX cluster of symmetric multiprocessing (SMP) servers running the VMS OS with extensions, mainly used in HA applications
U.C. Berkeley NOW Project (1995)	A serverless network of workstations featuring active messaging, cooperative filing, and GLUnix development
Rice University TreadMarks (1996)	Software-implemented distributed shared memory for use in clusters of UNIX workstations based on page migration
Sun Solaris MC Cluster (1995)	A research cluster built over Sun Solaris workstations; some cluster OS functions were developed but were never marketed successfully
Tandem Himalaya Cluster (1994)	A scalable and fault-tolerant cluster for OLTP and database processing, built with nonstop operating system support
IBM SP2 Server Cluster (1996)	An AIX server cluster built with Power2 nodes and the Omega network, and supported by IBM LoadLeveler and MPI extensions
Google Search Engine Cluster (2003)	A 4,000-node server cluster built for Internet search and Web service applications, supported by a distributed file system and fault tolerance
MOSIX (2010) www.mosix.org	A distributed operating system for use in Linux clusters, multiclusters, grids, and clouds; used by the research community

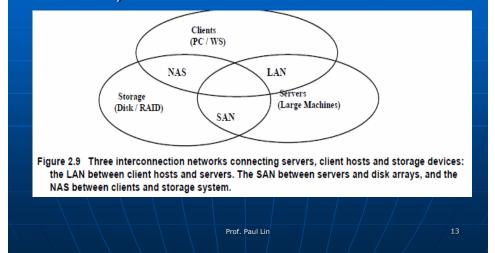

Prof. Paul Lin

Commercial Computer Clusters


Outside Linux


- HP Cluster Platforms, <u>http://www8.hp.com/us/en/products/servers/scalable-systems/clusterplatform.html</u>
- Oracle Solaries Cluster, <u>http://www.oracle.com/us/products/servers-</u> storage/solaris/cluster/overview/index.html
- IBM Cluster Systems, <u>http://www-</u> 03.ibm.com/systems/clusters/resources.html

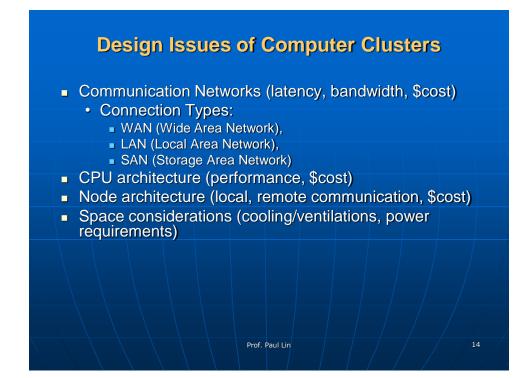
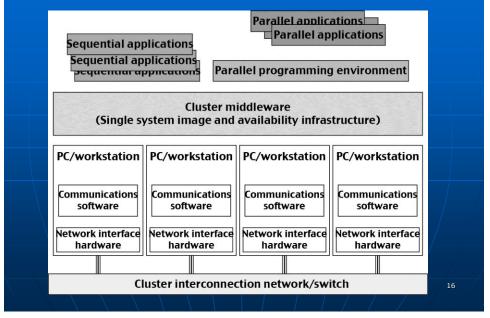
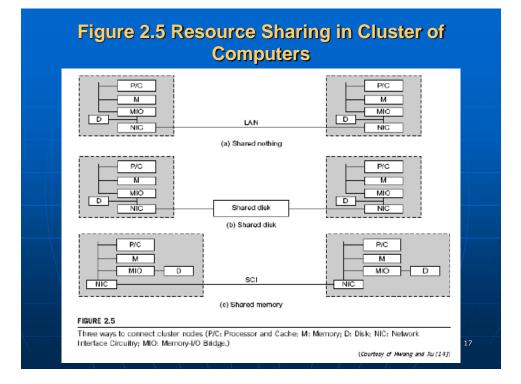
Prof. Paul Lin

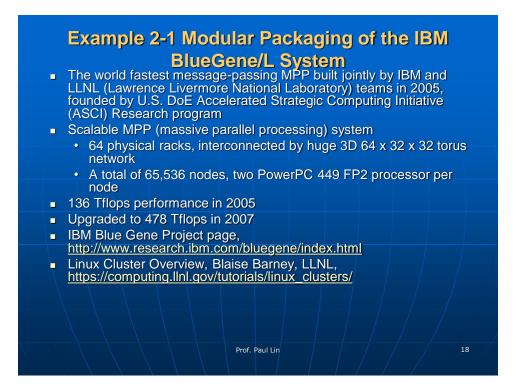


Benefits of Clustering & Cluster
Approaches
Operational Benefits
High System Availability
Hardware Fault Tolerance
 OS and Application Reliability
Scalability
Higher throughput/performance
 Cluster opportunities MPP/DSM: Parallelism, compute across multiple systems Network RAM: Idle memory in other nodes, pages across other node's idle memory
 Software RAID (Redundant Array of Inexpensive Disks)
 Muiti-path Communications: Ethernet, ATM,
Prof. Paul Lin 12

Cluster Interconnect

 NAS (Network Attached Storage), SAN (Storage Area Network)


Table 1.3 Critical Cluster Design Issues and Feasible Implementations

Features	Functional Characterization	Feasible Implementations
Availability and Support	Hardware and software support for sustained HA in cluster	Failover, failback, check pointing, rollback recovery, nonstop OS, etc.
Hardware Fault Tolerance	Automated failure management to eliminate all single points of failure	Component redundancy, hot swapping, RAID, multiple power supplies, etc.
Single System Image (SSI)	Achieving SSI at functional level with hardware and software support, middleware, or OS extensions	Hardware mechanisms or middleware support to achieve DSM at coherent cache level
Efficient Communications	To reduce message-passing system overhead and hide latencies	Fast message passing, active messages, enhanced MPI library, etc
Cluster-wide Job Management	Using a global job management system with better scheduling and monitoring	Application of single-job management systems such as LSF, Codine, etc.
Dynamic Load Balancing	Balancing the workload of all processing nodes along with failure recovery	Workload monitoring, process migration, job replication and gang scheduling, etc.
Scalability and Programmability	Adding more servers to a cluster or adding more clusters to a grid as the workload or data set increases	Use of scalable interconnect, performance monitoring, distributed execution environment, and better software tools

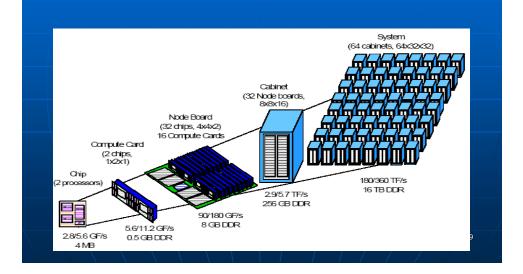
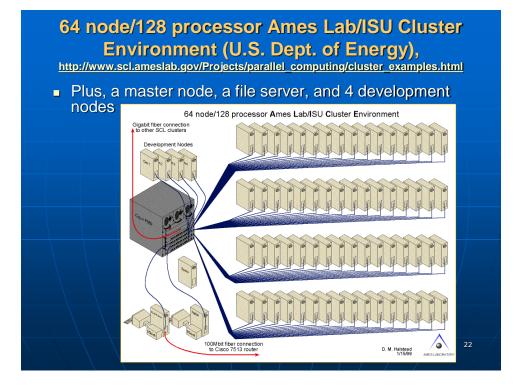


Figure 2.6 The IBM BlueGene/L SuperComputer

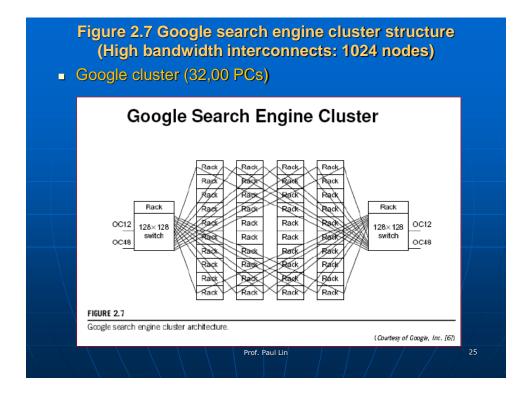
 IBM Blue Gene Project page, <u>http://www.research.ibm.com/bluegene/index.html</u>



Berkeley NOS (Network of Workstations) Project

- Clustered machines connected via high-speed switched networks, 1995, <u>http://now.cs.berkeley.edu/</u>
- NOW-2 (1997) 105 Ultra-1 workstations
- Each with a 167 MHz UltraSPARC Microprocessor, 128 MB of memory, and 2 Seagate Hawk 2 GB 5400 RPM 3.5 inch disks
- Myrinet switch system area network with each link operating at 160 Mbytes/second

2.3.3 Cluster System Interconnects


- High-Bandwidth Interconnect
- MPI Latency (Massage Passing Interface)

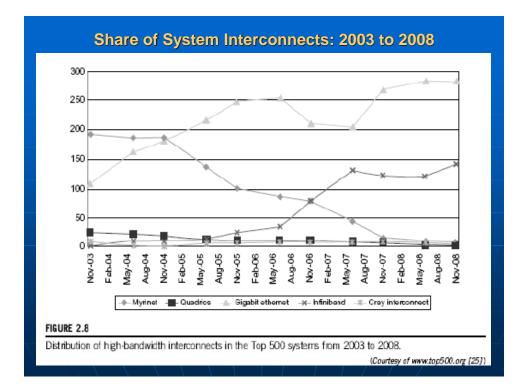
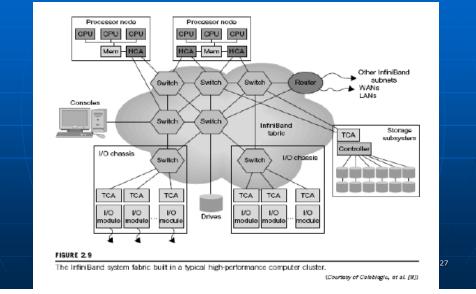
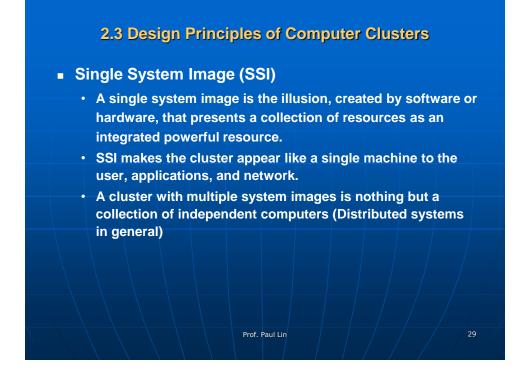
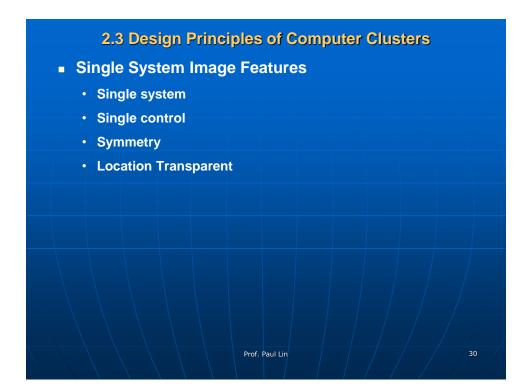

Feature	Myrinet	Quadrics	InfiniBand	Ethernet
Available Link Speeds	1.28 Gbps (M-XP) 10 Gbps (M-10G)	2.8 Gbps (QsNet) 7.2 Gbps (QsNetII)	2.5 Gbps (1X) 10 Gbps (4X) 30 Gbps (12X)	1 Gbps
MPI Latency	~3 us	~3 us	~4.5 us	~40 us
Network Processor	Yes	Yes	Yes	No
RDMA	Yes	Yes	Yes	No
Topologies	Any	Any	Any	Any
Network in a Box Topology	Clos	Fat-Tree	Fat-Tree	Any
Routing	Source-based, Cut-through	Source-based, Cut-through	Destination- based	Destination- based
Flow Control	Stop and Go	Worm-hole	Absolute credit based	802.3x

Table 2.5 Comparison of Four Cluster Interconnect Technologies by 2007

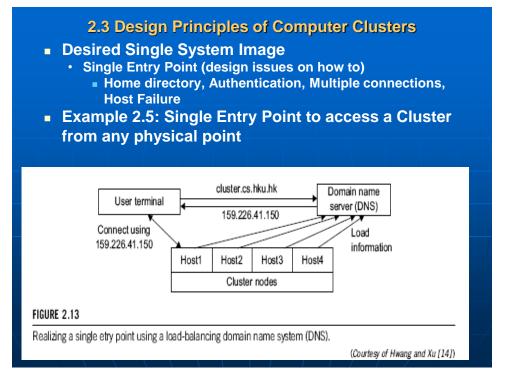
Example 2-2 Crossbar Switch in Google Search Engine Cluster

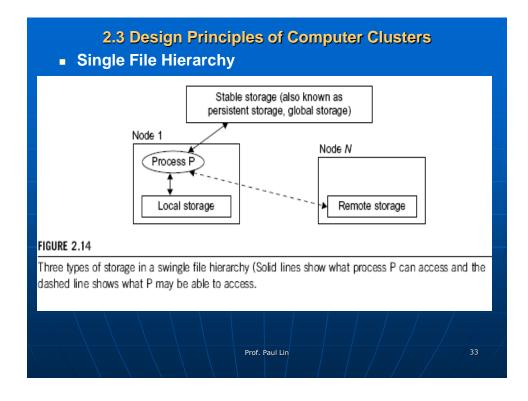

- High bandwidth interconnects: 1024 nodes
- Google cluster (32,00 PCs):
 - 4 x 10 racks of PCs, one rack contains 80 PCs
 - 2 x racks of 128x128 Ethernet switches (each handle 128 one-GPS Ethernet links);
 - Internet <= 2.4 Gbps OC 12
 - Datacenter network <= 622 Mbps OC12 links

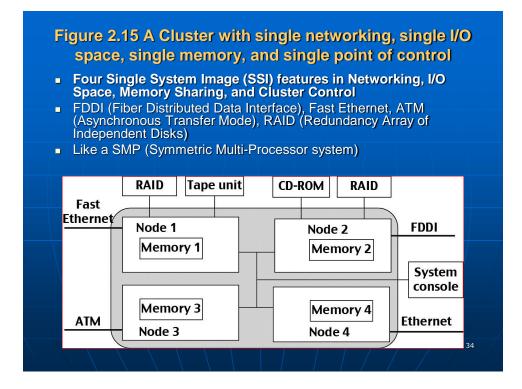



Example 2.3 The InfiniBand Architecture [8]

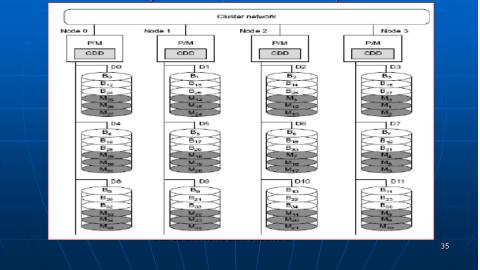
- A switch-based point-to-point interconnect architecture
- Support virtual interface architecture (VIA) for distributed messaging
- HCA (Host Channel Adapter), Target Channel Adapter (TCA)

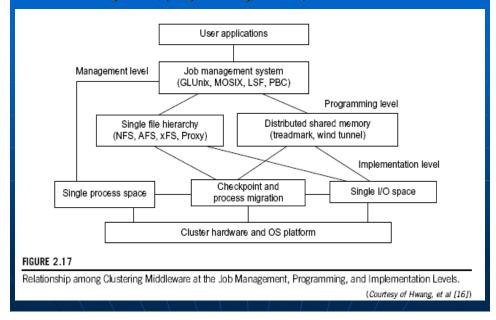



<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>



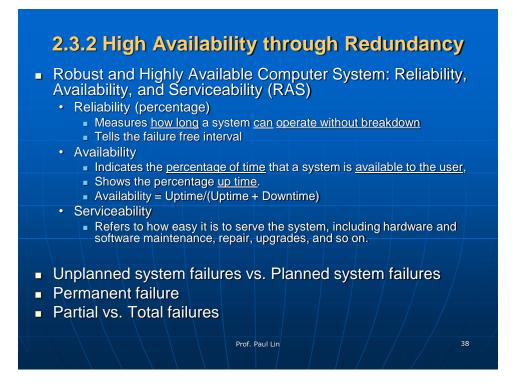
<section-header> **1.3 Design Principles of Computer Clusters 1. Desired Single System Image 1.** Single Entry Point **1.** Single File Hierarchy: **1.** ArG (x file system by Silicon Graphics in 1993), AFS *C* (Ardrew file system, Carnegie Mellon University's Andrew Project), Solaris MC Proxy **1.** Single Control Point: Management from single GUI **1.** Single memory space - Network RAM / DSM (Distributed shared memory) **1.** Single Job Management: GIUnix, Codine, LSF, etc. **1.** Single User Interface: Like CDE (Common Desktop Environment) in Solaris/MT^{aurulin}

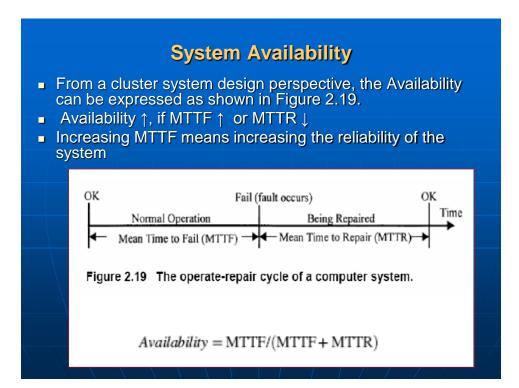




Example 2-6 Single I/O over Distributed RAID for I/O Centric Clusters [9]

 Figure 2.16 Distributed RAID architecture with a single I/O space over 12 distributed disks attached to 4 host computers (P/M: Processor/Memory, CDD – Corporative Disk Driver)

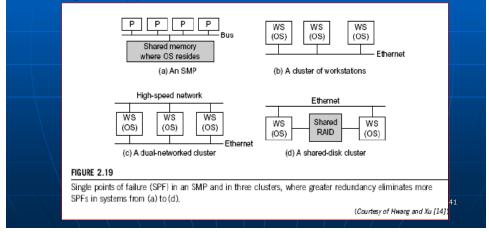

Figure 2.17 Relationship among cluster middleware at the job management, programming, and implementation levels



Availability Support Functions

- Availability Support Functions
- Single I/O Space (SIO):
 - Any node can access any peripheral or disk devices without the knowledge of their physical location.
- Single Process Space (SPS)
 - Any process has cluster wide process ID and they communicate through signal, pipes, etc, as if they are on a single node.
- Checkpointing and Process Migration.
 - Saves the process state and intermediate results from memory in rollback recovery from fails.

Prof. Paul Lin



Computer Systems - Availability

System Type	Availability (%)	Downtime in a Year
Conventional workstation HA system Fault-resilient system Fault-tolerant system	99 99.9 99.99 99.999	3.6 days 8.5 hours 1 hour 5 minutes

Example 2.7 Single Points of Failure in a SMP and in Clusters of Computers

- Configuration (a): Single points of failure: the Shared memory, the OS image, the Memory bus
- Configuration (b): single point of failure is Ethernet
- Configuration (c): Two paths of communication takes care problem (b)
- Configuration (d): the data will not be lost

	Paralle	el Reliability N	Nodel
 A pa N id relia 	is of the reliabilit arallel componer entical and inde bility (available overall system	nt/system relia pendent comp time) R	ponent/system, with
		Prof. Paul Lin	42

Table 2.6 Job Scheduling Issues and Schemes for Cluster Nodes

Issue	Scheme	Key Problems
Job priority	Nonpreemptive	Delay of high-priority jobs
	Preemptive	Overhead, implementation
Resource required	Static	Load imbalance
	Dynamic	Overhead, implementation
Resource sharing	Dedicated	Poor utilization
	Space sharing	Tiling, large job
Scheduling	Time sharing	Process-based job control with context switch overhead
	Independent	Severe slowdown
	Gang scheduling	Implementation difficulty
Competing with foreign	Stay	Local job slowdown
(local) jobs	Migrate	Migration threshold, migration overhead

Prof. Paul Lin

Examples: Redundancy Techniques (Parallel Reliability Model)

- Consider the Figure 2-19 (d) A Shared Disk Configuration with 2 nodes
- Assume that
 - (1) Only "the nodes" can fail, and the rest of the system interconnect and shared RAID disk is 100% available
 - (2) When a node fail, its workload is switched over to the other node in "Zero time"
- What is the availability of the cluster if planned downtime is ignored?
 - From Table 2.5, a conventional workstation is available 99% of time.
 - A = MTTF/(MTTF + MTTR)
 - The time both nodes are down is only 0.01%
 - Thus, the availability is 99.99% = 100% 0.01%
 - This is a Fault-resilient system with only 1 hour of downtime per year

Prof. Paul Lin

4

Examples: Redundancy Techniques (cont.)

- What is the availability if the cluster needs one hour/week for maintenance?
- Answer:
 - The planned downtime is 52 hours per year = 52/(356 x 24) x 100% = 0.0059 x 100% = 0.59%
 - Total down time 0.59% + 0.01% (both nodes are down) = 0.6%
 - The availability of the cluster is 100% 0.6% = 99.4%

