CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies

Lecture 4

Virtualization of Clusters and Data Centers

Text Book: <u>Distributed and Cloud Computing</u>, by K. Hwang, G C. Fox, and J.J. Dongarra, published Elsevier/Morgan Kaufmann, 2012.

Spring 2015

A Specialty Course for Purdue University's M.S. in Technology Graduate Program: IT/Advanced Computer App Track

Paul I-Hai Lin, Professor

Dept. of Computer, Electrical and Information Technology Purdue University Fort Wayne Campus

Prof. Paul Lin

References

- [1] Chapter 3. Virtual Machines and Virtualization of Clusters for Data Centers, of the Text Book: <u>Distributed and Cloud Computing</u>, by K. Hwang, G C. Fox, and J.J. Dongarra, published Elsevier/Morgan Kaufmann, 2012.
- [2] "Virtualization Overview," VMware White paper, 2006
- [3] Understanding Full Virtualization, Paravirtualization and Hardware Assist, Nov. 10, 2007,
 - http://www.vmware.com/resources/techresources/1008
- [4] "The Architecture of Virtual Machines," J. E. Smith and R. Nair, IEEE Computer, May 2005, pp. 32-38.
- [5] "Virtual Machine Monitors: Current Technology and Future Trends," IEEE Computer, May 2005, pp. 39-47.
- [6] "Intel Virtualization Technology," R. Uhlig, et. al., IEEE Computer, May 2005, pp. 48-56.
- [7] "Rethinking the Design of Virtual Machine Monitor," A. Whitaker, R. S. Cox, M. Shaw, and S. D. Gribble, IEEE Computer, May 2005, pp. 57-62.
- [8] "Virtual Distributed Environments in a Shared Infrastructure," P. Ruth, X. Jiang, D. Xu, and S. Goasguen, IEEE Computer, May 2005, pp. 63-69.

Topics of Discussion

Virtualization

- Virtualization
 - · Emulation of a computer hardware environment in software.
 - A virtualization software layer known as Hypervisor or Virtual Machine Monitor (VMM) is needed.
 - It presents all the necessary hardware components such as CPU, memory, storage, etc., to an hosting environment to make it appear that its is running on a real hardware device.
 - Full Virtualization
 - Para Virtualization
 - Hardware Assisted Virtualization
- Virtual Machine
- Levels of Virtualization
- Virtualization Technologies
- Server Virtualization
 - Window Servers
 - Linux Servers
 - Desktop virtualization

Figure 3.1 The Architecture of a Computer System before and after Virtualization

Primitive Operations in Virtual Machines

Virtual Machine, VMM or Virtualization Layer

- Virtual Machine
 - A representation of a real machine using software that provides an operating environment which can run or host a guest operating system.
- Guest Operating System
 - An operating system running in a virtual machine environment that would otherwise run directly on a separate physical system.
- Virtualization Layer or Virtual Machine Monitor
 - The Virtualization layer is the middleware between the underlying hardware and virtual machine represented in the system, also known as virtual machine monitor (VMM)

Prof. Paul Li

8

Figure 1.12 Three VM Architectures

X86 Virtualization Layer (source: VMWare [2])

Figure 3.2 Five Levels of Virtualization ranging from Hardware to Applications

Table 3.1 Relative Merits of Virtualization at Various Levels (More "X"'s means Higher Merits, with a Maximum of 5 X's)

Table 3.1 Relative Merits of Virtualization at Various Levels					
Level of Implementation	Higher Performance	Application Flexibility	Implementation Complexity	Application Isolation	
ISA	Х	XXXXX	XXX	XXX	
Hardware-level virtualization	XXXXXX	XXX	XXXXX	XXXX	
OS-level virtualization	XXXXXX	XX	XXX	XX	
Runtime library support	XXX	XX	XX	XX	
User application level	XX	XX	XXXXX	XXXXX	

Virtualization on Linux or Windows Platforms

VM Technology for Supporting Cloud Computing

- Challenges for VM technology to support Cloud Computing
 - 1. Ability to use a variable number of physical machines and VM instances
 - 2. Slow operation of instantiating new VMs
- Why OS-Level Virtualization (benefits)
 - Minimum startup/shutdown costs, Low resource requirement, and high scalability
 - Synchronizing state changes when necessary

Full vs. Para Virtualization

Full Virtualization

- Guest OS and critical instructions are emulated through "Binary Code Translation"
- VMware Workstation applies full virtualization
- · Slow down the performance
- Para Virtualization
 - Guest OS, and non-virtualizable instructions are replaced by hypercalls (kernel calls) that communicate directly with the Hypervisor or VMM
 - Guest OS has to be modified
 - · Disadvantages:
 - Reduced Compatibility, Portability because of the modified OS
 - Higher cost of maintenance due to deep OS modifications
 - Supported by Xen, Denali and VMWare ESX

Full Virtualization

Para Virtualization

Table 3.2 Comparison of Four VMM and Hypervisor Software Packages

VMM Provider	Host CPU	Guest CPU	Host OS	Guest OS	VM Architecture
VMware Work-station	X86, x86-64	X86, x86-64	Windows, Linux	Windows, Linux, Solaris, FreeBSD, Netware, OS/2, SCO, BeOS, Darwin	Full Virtualization
VMware ESX Server	X86, x86-64	X86, x86-64	No host OS	The same as VMware workstation	Para- Virtualization
XEN	X86, x86-64, IA- 64	X86, x86- 64, IA-64	NetBSD, Linux, Solaris	FreeBSD, NetBSD, Linux, Solaris, windows XP and 2003 Server	Hypervisor
кум	X86, x86- 64, IA64, S390, PowerPC	X86, x86- 64, IA64, S390, PowerPC	Linux	Linux, Windows, FreeBSD, Solaris	Para- Virtualization

- Vmware, <u>www.vmware.com</u>
- <u>http://xen.org</u>, Xen Hypervisor, Xen Cloud platform, Xen Arm
- KVM (kernel-based Virtual Machine), <u>http://www.linux-kvm.org/page/Main_Page</u>

Example 3-1. Virtualization on Linux or Windows Platforms

- Most reported OS-level virtualization systems are Linux-based.
- New hardware may need different Linux patched kernels to provide special support for extended functionality.

Table 3.3 Virtualization Support for Linux and W	indows NT Platforms		
Virtualization Support and Source of Information	Brief Introduction on Functionality and Application Platforms		
Linux vServer for Linux platforms (http://linux- vserver.org/)	Extends Linux kernels to implement a security mechanism to help build VMs by setting resource limits and file attributes and changing the root environment for VM isolation		
OpenVZ for Linux platforms (65); http://ftp.openvz .org/doc/OpenVZ-Users-Guide.pdf)	Supports virtualization by creating virtual private servers (VPSes); the VPS has its own files, users, process tree, and virtual devices, which can be isolated from other VPSes, and checkpointing and live migration are supported		
FVM (Feather-Weight Virtual Machines) for virtualizing the Windows NT platforms [78])	Uses system call interfaces to create VMs at the NY kernel space; multiple VMs are supported by virtualized namespace and copy-on-write		

Hypervisor

- Hypervisor (VMM)
 - A hardware virtualization techniques allowing multiple guest OSs to run on a host machine.
 - Provides hypercalls for the guest OSs and applications
 - Depending on the functionalities, a hypervisor can
 - Assume a micro-kernel architecture
 - Or assume a monolithic hypervisor architecture like VMware ESX for server virtualization
- Types of Hypervisor
 - Type 1 Hypervisor
 - Run on the bare metal hypervisor
 - Examples:
 - IBM CP/CMS hypervisor
 - Microsoft Hyper-V
 - Type 2 (Hosted Hypervisor)
 - Run over a host OS
 - The hypervisor is the second layer over the hardware
 - Examples: FreeBSD Prof. Paul Lin

20

Hypervisor and XEN Architecture

The XEN Architecture

- An open source hypervisor program developed by Cambridge University, <u>http://xen.org</u>
- Xen hypervisor (a micro kernel)
- Commercial Xen Hypervisors: Citrix XenServer, Oracle VM
- Domain 0 Privileged guest OS of Xen

Para-Virtualization with Compiler Support

 The KVM builds offers Kernelbased VM on the Linux platform, based on Paravirtualization

FIGURE 3.7

Para-virtualized VM architecture, which involves modifying the guest OS kernel to replace nonvirtualizable instructions with hypercalls for the hypervisor or the VMM to carry out the virtualization process (See Figure 3.8 for more details).

Figure 3.8 The use of a Para-Virtualized OS assisted by an Intelligent Compiler to replace Non-virtualized OS Instructions by Hypercalls

Virtualization of CPU, Memory, and I/O Devices

- Hardware Support for Virtualization
- CPU Virtualization
- Memory Virtualization
- I/O Virtualization
- Virtualization in Multi-Core Processors

Example 3-4: Virtualization Support at Intel

• EPT (Extended Page Table); VT-x (Intel's Virtualization Technology)

Intel Hardware-assisted CPU Virtualization

COW – Copy On Write

Virtual Clusters vs. Physical Clusters

A Virtual Clusters based on Application Partitioning

Virtual Clusters Projects

Project Name	Design Objectives	Reported Results and References	
Cluster-on-Demand at Duke Univ.	Dynamic resource allocation with a virtual cluster management system	Sharing of VMs by multiple virtua clusters using Sun GridEngine [1;	
Cellular Disco at Stanford Univ.	To deploy a virtual cluster on a shared-memory multiprocessor	VMs deployed on multiple processors under a VMM called Cellular Disco [8]	
VIOLIN at Purdue Univ.	Multiple VM clustering to prove the advantage of dynamic adaptation	Reduce execution time of applications running VIOLIN with adaptation [25,55]	
GRAAL Project at INRIA in France	Performance of parallel algorithms in Xen-enabled virtual clusters	75% of max. performance achieved with 30% resource slacks over VM clusters	

Example 3.10: VIOLIN Project at Purdue University

- Live VM migration to reconfigure a virtual cluster environment
- Five concurrent virtual environment, labeled VIOLIN 1-5, sharing two physical clusters.

more idle squares (blank nodes) before and after the adaptation.

(Courtesy of P. Ruth, et al. [24,51])

3.5 Virtualization for Data Center Automation

Example 3.11: Parallax Providing Virtual Disks to Clients VMs from a Large Common Shared Physical Disk

Cloud OS for Virtualizing Data Centers (VI: Virtual Infrastructure, EC2: Elastic Compute Cloud)

Manager/ OS, Platforms, License	Resources Being Virtualized, Web Link	Client API, Language	Hypervisors Used	Public Cloud Interface	Special Features
Nimbus Linux, Apache v2	VM creation, virtual cluster, www .nimbusproject.org/	EC2 WS, WSRF, CLI	Xen, KVM	EC2	Virtual networks
Eucalyptus Linux, BSD	Virtual networking (Example 3.12 and [41]), www .eucalyptus.com/	EC2 WS, CLI	Xen, KVM	EC2	Virtual networks
OpenNebula Linux, Apache v2	Management of VM, host, virtual network, and scheduling tools, www.opennebula.org/	XML-RPC, CLI, Java	Xen, KVM	EC2, Elastic Host	Virtual networks, dynamic provisioning
vSphere 4 Linux, Windows, proprietary	Virtualizing OS for data centers (Example 3.13), www .vmware.com/ products/vsphere/ [66]	CLI, GUI, Portal, WS	VMware ESX, ESXi	VMware vCloud partners	Data protection, vStorage, VMFS, DRM, HA

Prof. Paul Lin

Example 3.12: Eucalptus, An Open-SourceOS for Setting Up and Managing Private Clouds (IaaS)

- Three Resource Managers: CM (Cloud Manager), GM (Group Manager), and IM (Instance Manager)
- Works like AWS APIs

Trust Managmenet: VM-based Intrusion Detection

