CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies

Lecture 6 Cloud Platform Architecture over Virtualized Data Centers Part -2: Data-Center Design and Interconnection Networks & Architecture Design of Compute and Storage Clouds Text Book: Distributed and Cloud Computing, by K. Hwang, G C. Fox, and J.J. Dongarra, published Elsevier/Morgan Kaufmann, 2012. Spring 2015 A Specialty Course for Purdue University's M.S. in Technology Graduate Program: IT/Advanced Computer App Track Paul I-Hai Lin, Professor Dept. of Computer, Electrical and Information Technology Purdue University Fort Wayne Campus

Prof. Paul Lin

Ch. 4 - Topics of Discussion

- Cloud Computing and Service Models
- Data-Center Design and Interconnection Networks
- Architectural Design of Compute and Storage Clouds
- Public Cloud Platforms: Google App Engine, Amazon Web Services and Microsoft Window Azure
- Inter-Cloud Resource Management
- Cloud Security and Trust Management

4.2 Data-Center Design and Interconnection Networks

The Architecture of a Small

Server Cluster (~ 1000 servers)

interconnected by an Ethernet switch and housed in a warehouse or in a container environment

Warehouse-Scale Computer and Datacenter (WSC)

- Provides Internet services
 - Search, social networking, online maps, video sharing, online shopping, email, cloud computing, etc.
- Differences with HPC "clusters":
 - Clusters have higher performance processors and network
 - Clusters emphasize thread-level parallelism, WSCs emphasize request-level parallelism
- Differences with datacenters:
 - Datacenters consolidate different machines and software into one location
 - Datacenters emphasize virtual machines and hardware heterogeneity in order to serve varied customers

(Courtesy of Hennessy and Patterson, 2012)

4 - 5

Copyright © 2012, Elsevier Inc. All rights reserved.

Example 4.8 A huge datacenter that is 11 times the size of a football field, housing 400,000 to 1 million servers.

Power Consumption in Servers

(computer, network switches & routers, cooling supplies, Uninterrupted Power Supply)

Example 4.4 A Fat-free Interconnection Network for Data Center (Figure 4-10)

- Two layers topology with multipath and fault tolerant capability
- Bottom Layer Server nodes

Example 4.5 A Server-Centric Network for Modular Data Center Server --- O circle; Switch -- Rectangle

Figure 4-11 A modular datacenter built in a truck-towed ICE Cube container, that can be cooled by chilled air circulation with cold water heat exchange

7

Larger Datacenter Growth

- One at a time:
 - > 1 system
 - Racking & networking: 14 hrs (\$1,330)
- Rack at a time:
 - ~ 40 systems
 - Install & networking: .75 hrs (\$60)
- Container at a time:
 - ~1,000 systems
 - No packaging to remove
 - No floor space required
 - Power, network, & cooling only
- Weatherproof & easy to transport
- Datacenter construction takes 24+ months
 - Both new build & DC expansion require regulatory approval

Cloud Computing

- Warehouse Scalable Computers (WSCs) offer economies of scale that cannot be achieved with a datacenter:
 - 5.7 times reduction in storage costs
 - 7.1 times reduction in administrative costs
 - 7.3 times reduction in networking costs
 - This has given rise to cloud services such as Amazon Web Services
 - "Utility Computing"
 - Based on using open source virtual machine and operating system software

(Courtesy of Hennessy and Patterson, 2012)

Copyright © 2012, Elsevier Inc. All rights reserved.

4 - 16

4.3 Architectural Design of Compute and Storage Cloud

Four Cloud Platform Design Goals

- Scalability
- Virtualization
- Efficiency
- Reliability

Cloud-Enabling Technologies (hardware, software, networking)

- Fast platform deployment
- Virtual clusters on demand
- Multitenant techniques
- Massive data processing
- Web-scale communication
- Distributed storage
- Licensing and billing services

Prof. Paul Lin

Market-Oriented Cloud Architecture

- QoS (Quality of Service) based resource allocation mechanisms
 - Users/Brokers
 - SLA resource allocator
 - VMs
 - Physical machinec
- Critical QoS Parameters:
 - Time
 - Cost
 - Reliability, and
 - Trust/security

Prof. Paul Li

/ 20

Market-Oriented Cloud Architecture

Table 1.7 Th	Table 1.7 Three Cloud Computing Platforms and Underlying Technologies [14]						
Platform	Google Cloud	IBM BlueCloud	Amazon Cloud				
Features	Platform [17]	System [7]	Cluster [
Platform	Google server clusters	A clustered server platform to	Amazon built an utility				
Architecture	dynamically drafted from	provide a total system to	cluster (iDataPlex) of 2000				
and	450K Google servers,	distributed problem solving	nodes with distributed				
Technology	GFS, and datacenters	and decision making	storage				
Target Applications claimed by cloud providers	Upgraded web-scale services, distributed data storage and services based on Software or Platform as a Service (SaaS or PaaS) models	Business applications, academic services, and raw supercomputing, and collaborative computing based on the Platform as a Service (PaaS) model.	To lease CPU time and storage to serve massive number of small users in business applications using an Infrastructure as a Service (laaS) Model				
Programming	Extending MapReduce	Use open software from	Use Hadoop EC2 to provide				
Model and	and BigTable for	Google and Hadoop plus IBM	CPU cycles and S3 for				
Software	web-scale search and	WebSphere 2.0, DB2,	storage services in				
Tools Applied	distributed computing	PowerVM, and Tivoli software	business and e-commerce				

Copyright © 2012, Elsevier Inc. All rights reserved.

4 - 24

Provider	AWS	Microsoft Azure	GAE	
Compute cloud with virtual cluster of servers	x86 instruction set, Xen VMs, resource elasticity allows scalability through virtual cluster, or a third party such as RightScale must provide the cluster	Common language runtime VMs provisioned by declarative descriptions	Predefined application framework handlers written in Python, automatic scaling up and down, server failover inconsistent with the Web applications	
Storage cloud with virtual storage	Models for block store (EBS) and augmented key/blob store (SimpleDB), automatic scaling varies from EBS to fully automatic (SimpleDB, S3)	SQL Data Services (restricted view of SQL Server), Azure storage service	MegaStore/BigTable	
Network cloud services	Declarative IP-level topology; placement details hidden, security groups restricting communication, availability zones isolate network failure, elastic IP applied	Automatic with user's declarative descriptions or roles of app. components	Fixed topology to accommodate three-tier Web app. structure, scaling up and down is automatic and programmer-invisible	

Copyright © 2012, Elsevier Inc. All rights reserved.

4 - 25

Cloud Services and Major Providers

Cloud application (SaaS)				Concur, RightNOW, Teleo, Kenexa, Webex, Blackbaud, salesforce.com, Netsuite, Kenexa, etc.
Cloud software environment (PaaS)			(PaaS)	Force.com, App Engine, Facebook, MS Azure, NetSuite, IBM BlueCloud, SGI Cyclone, eBay
	Cloud software infrastructure			Amazon AWS, OpSource Cloud, IBM Ensembles,
	Computational resources (laaS)	Storage (DaaS)	Communications (Caas)	Rackspace cloud, Windows Azure, HP, Banknorth
Co-location cloud services (LaaS)				Savvis, Internap, NTTCommunications, Digital Realty Trust, 365 Main
	Netwo	ork cloud services	(NaaS)	Owest, AT&T, AboveNet
	Hardware/Virtu	alization cloud se	rvices (HaaS)	VMware, Intel, IBM, XenEnterprise

FIGURE 4.23

A stack of six layers of cloud services and their providers.

(Courtesy of T. Chou, Active Book Express, 2010 [16]) Copyright © 2012, Elsevier Inc. All rights reserved.

4 - 26

