CPET 581 Cloud Computing: Technologies and Enterprise IT Strategies

Lecture 6

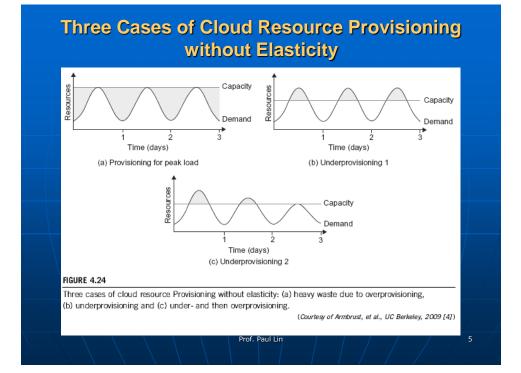
Cloud Platform Architecture over Virtualized Data Centers Part -4 Cloud Security and Trust Management

Text Book: <u>Distributed and Cloud Computing</u>, by K. Hwang, G C. Fox, and J.J. Dongarra, published Elsevier/Morgan Kaufmann, 2012.

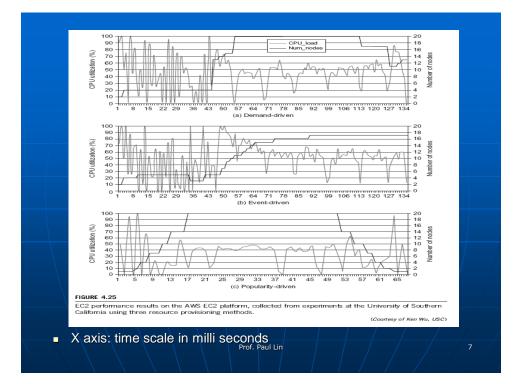
Spring 2015 A Specialty Course for Purdue University's M.S. in Technology Graduate Program: IT/Advanced Computer App Track Paul I-Hai Lin, Professor Dept. of Computer, Electrical and Information Technology Purdue University Fort Wayne Campus

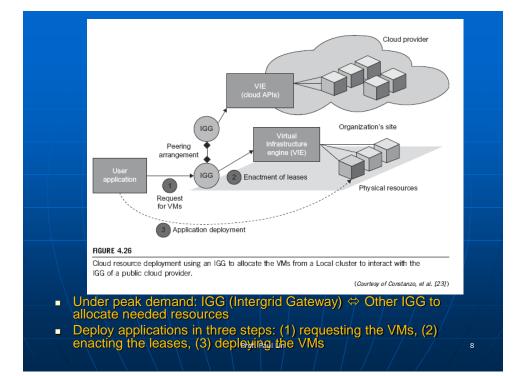
Ch. 4 - Topics of Discussion

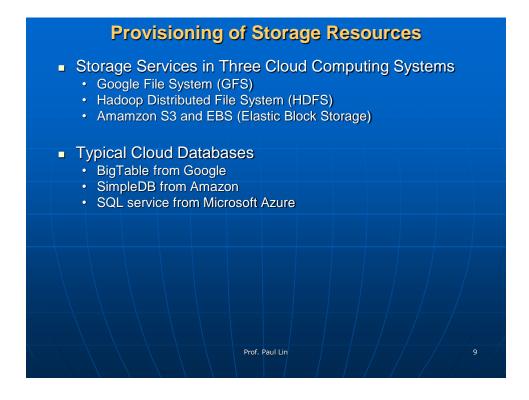
- Cloud Computing and Service Models
- Data-Center Design and Interconnection Networks
- Architectural Design of Computer and Storage Clouds
- Public Cloud Platforms: Google App Engine, Amazon Web Services and Microsoft Window Azure
- Inter-Cloud Resource Management
 Resource Provisioning and Platform Deployment
- Cloud Security and Trust Management


Figure 4.23 A stack of six layers of cloud services and their providers

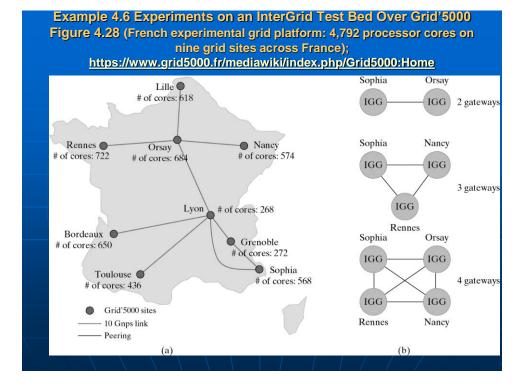
 Six layers of cloud services: Hardware, Network, Collocation, Infrastructure, Platform, and Software Apps

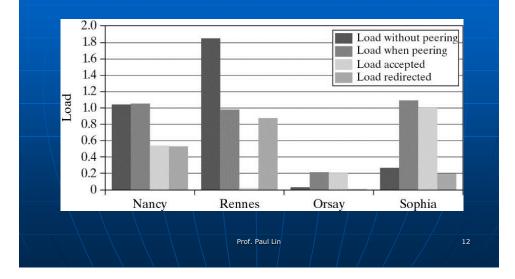

Clou	d application (Saa	iS)	Concur, RightNOW, Teleo, Kenexa, Webex, Blackbaud, salesforce.com, Netsuite, Kenexa, etc.	
Cloud software environment (PaaS)			Force.com, App Engine, Facebook, MS Azure, NetSuite, IBM BlueCloud, SGI Cyclone, eBay	
Cloud software infrastructure			Amazon AWS, OpSource Cloud, IBM Ensembles,	
Computational resources (laaS)	Storage (DaaS)	Communications (Caas)	Rackspace cloud, Windows Azure, HP, Banknorth	
Collocation cloud services (LaaS)			Savvis, Internap, NTTCommunications, Digital Realty Trust, 365 Main	
Network cloud services (NaaS)			Owest, AT&T, AboveNet	
Hardware/Virtu	alization cloud se	rvices (HaaS)	VMware, Intel, IBM, XenEnterprise	
		Prof. Pau	I Lin 3	


Three Cases of Cloud Resource Provisioning without Elasticity


- Case (a): Overprovisioning with the peak load
 - Fixed capacity
 - · Heavy resource waste shown in shaded area
- Case (b): Under provisioning #1 along the capacity line (results in losses by both user and provider)
 - Fixed capacity
 - · Paid demand by the users is not served
 - Wasted resources still exist
- Case (c): Under provisioning # 2
 - Fixed capacity
 - Under provisioning, and then over provisioning, Under, ...
 - Worse resource waste

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>




VMInstance vm=vmms.submit(vmTemplate, host) vmInstance.shutdown() VM manager service Template directory Public API ubuntu; 1 core; 128 Mbytes fedora; 2 cores; 256 Mbytes Interface opensuse; 1 core; 512 Mbytes OpenNebula Emulator laaS OAR/Kadeploy VM VM Convert the generic template to the virtual infrastructure engine format Amazon -EC2 VM VМ VM and the second s νм Local physical Grid'5000 infrastructure FIGURE 4.27 Interactions among VM managers for cloud creation and management; the manager provides a public API for users to submit and control the VMs. (Courtesy of Constanzo, Assuncao, and Buyya [17])

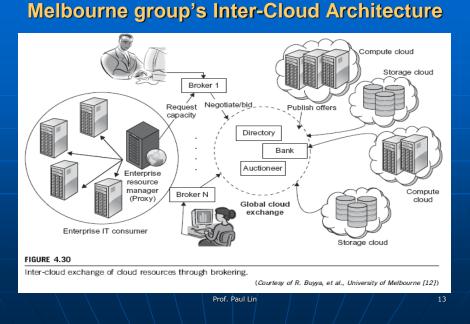
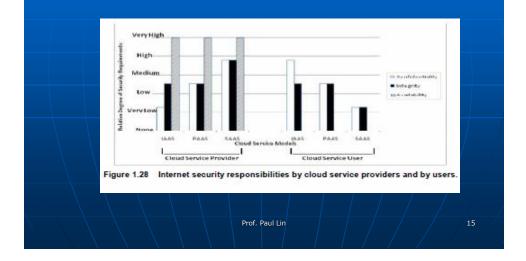
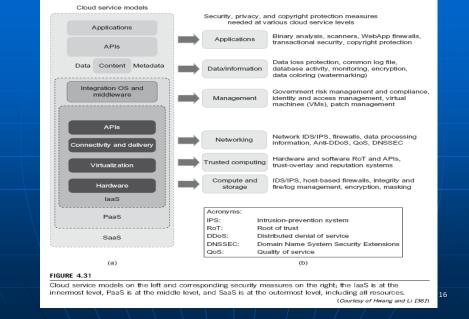

Interactions among VM Managers for Cloud Creation and Management

Figure 4.28 Cloud loading results at four gateways at resource sites in the Grid5000 system

- Load Characteristics under 4 Gateway Scenario
- Rennes, the site with a heavy load benefits from peering with other gatewas


4.5.4 Global Exchange of Cloud Resources Melbourne group's Inter-Cloud Architecture

Cloud Security and Trust Management



Cloud Security Responsibilities

Confidentiality, Integrity, Availability

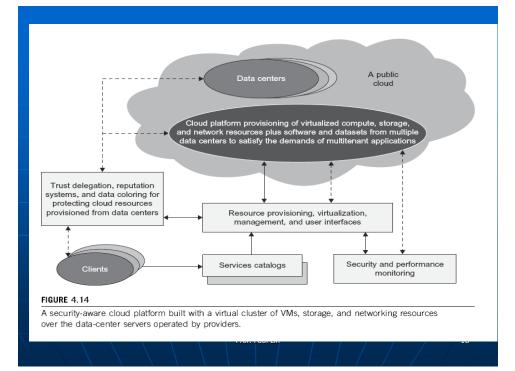


Figure 4.31 Basic Cloud Security

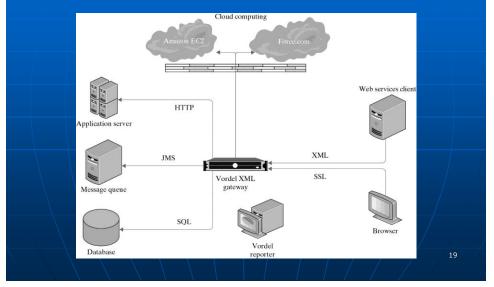

Eight Protection Schemes to Secure Public Clouds and Data Centers

Table 4.9 Physical and Cyber Security Protection at Cloud/Data Centers					
Protection Schemes	Brief Description and Deployment Suggestions				
Secure data centers and computer buildings	Choose hazard-free location, enforce building safety. Avoid windows, keep buffer zone around the site, bomb detection, camera surveillance, earthquake-proof, etc.				
Use redundant utilities at multiple sites	Multiple power and supplies, alternate network connections, multiple databases at separate sites, data consistency, data watermarking, user authentication, etc.				
Trust delegation and negotiation	Cross certificates to delegate trust across PKI domains for various data centers, trust negotiation among certificate authorities (CAs) to resolve policy conflicts				
Worm containment and DDoS defense	Internet worm containment and distributed defense against DDoS attacks to secure all data centers and cloud platforms				
Reputation system for data centers	Reputation system could be built with P2P technology; one can build a hierarchy of reputation systems from data centers to distributed file systems				
Fine-grained file access control	Fine-grained access control at the file or object level; this adds to security protection beyond firewalls and IDSes				
Copyright protection and piracy prevention	Piracy prevention achieved with peer collusion prevention, filtering of poisoned content, nondestructive read, alteration detection, etc.				
Privacy protection	Uses double authentication, biometric identification, intrusion detection and disaster recovery, privacy enforcement by data watermarking, data classification, etc.				

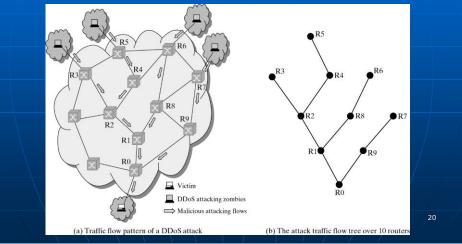
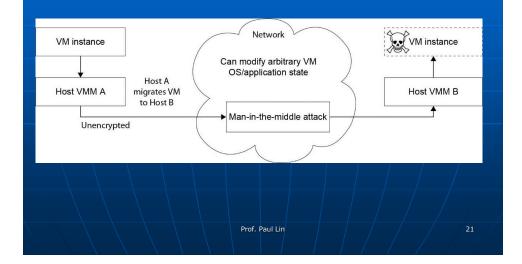
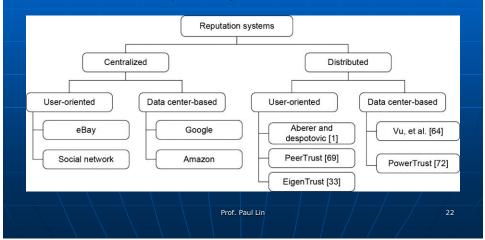

Example 4.7 Cloud Security Safeguarded by Gateway and Firewalls

 Figure 4.32 The typical security structure by a secured gateway plus external firewalls to safeguard the access of public or private clouds


4.6.2 Distributed Intrusion/Anomaly

- Other Cloud security concerns: Data lock-in problem, network attacks or abuse
- Figure 4.33 Distributed Defense against DDoS (Distributed Denial of Service)
 - Flooding attack pattern
 - Hidden attacker launched the attack from many zombies toward a victim server at the bottom Router R0.

Example 4.8 Man-in-the-Middle Attacks


- VM migration from VMM A => Security Vulnerable Network => VMM B
- The attacker can view the VM contents, steal sensitive data, or modify content

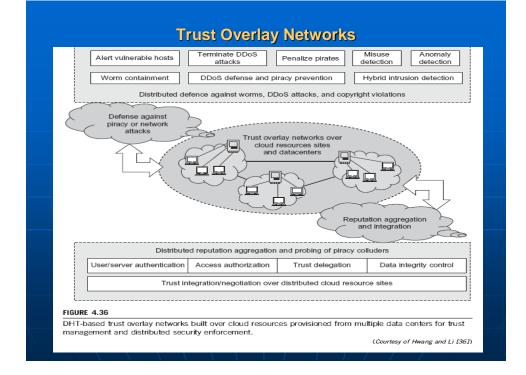
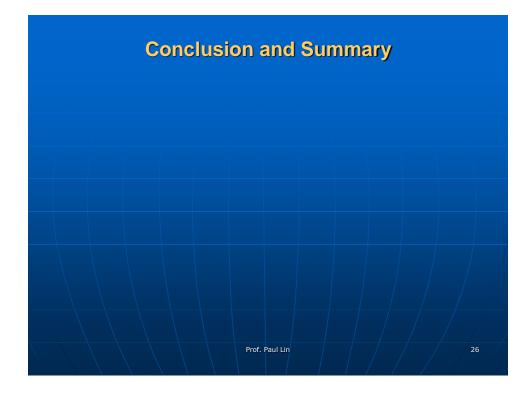


Figure 4.36 Reputation Systems for Social Networks and Cloud Systems

Design options


- · Centralized reputation system
- Decentralized reputation system

Data Coloring and Cloud Watermarking


 Data coloring: Labeling each data object by a unique color

Basic Papers to Read

- 1. M. Armbrust, et al, "Above the Clouds: A Berkeley View of Cloud Computing", *Technical Report*, UCB/EECS-2009-28, Feb.2009.
- 2. K. Hwang and D. Li, "Trusted Cloud Computing with Secure Resources and Data Coloring", *IEEE Internet Computing*, Sept. 2010.
- 3. M. Rosenblum and T. Garfinkel, "Virtual Machine Monitors: Current Technology and Future Trends", *IEEE Computer*, May 2005, pp.39-47.
- B. Sotomayor, R. Montero, and I. Foster, "Virtual Infrastructure Management in Private and Hybrid Clouds", *IEEE Internet Computing*, Sept. 2009

