CPET 581 Cloud Computing:
Technologies and Enterprise |1 Strategies

LLecture 8
Cloud' Programming & Software Environments:
High Performance Computing & AWS Services
Part 2 of 2
Spring 2015

A Specialty Course for Purdue University’s M.S. in Technology
Graduate Program: IT/Advanced Computer App Track

Paul I-Hai Lin, Professor
Dept. of Computer, Electrical and Information Technology
Purdue University Fort Wayne Campus

References

1. Chapter 6. Cloud Programming and Software Environments, Book
“Distributed and Cloud Computing,” by Kai Hwang, Geoffrey C. Fox
a,d Jack J. Dongarra, published by Mogan Kaufmman/ Elsevier Inc.

Topics

= High Performance Computation
» Parallel Matrix Multiplication
» Computational Complexity and Analysis
s Parallel Programming on Amazon Web Service (AWS)
Amazon Platforms and Service Offerings
AWS Elastic Compute Cloud (EC2)
AWS Simple Storage Services (S3)
» AWS Elastics Bock Store (EBS)

+ AWS Simple DS

Parallel'Matrix Multiplication

s Matrix,
https://en.wikipedia.org/wiki/Matrix_(mathematics)

Given two n x n matrices :

A= (aij) and B = (bll)
Compute the productof AandB: C=(c;)=AxB

where ¢j= 3 aixx byjfor all k=1,2, ..., n
= apXxby+apxby+..... + ajn X by
= Dot product of row vector A;and column vector B;
= Dot product of row vector of A;and row vector of BjT

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Parallel'Matrix Multiplication

= Matrix, https://en.wikipedia.org/wiki/Matrix_(mathematics),

m-by-n matrix

a;j n columns NENGEEN)

m — r_
FowWs
a1 diz dyz - - -

da 1

Parallel'Matrix Multiplication

https://en.wikipedia.org/wiki/Matrix_(mathematics)
//upload.wikimedia.org/wikipedia/commons/b/bb/Matrix.svg
https://en.wikipedia.org/wiki/File:Matrix_multiplication_diagram_2.svg

Computational Complexity Analysis

We need to perform n’ dot products to produce all Cij

The total complexity = n*xn=n> "Multiply and Add " operations.
Thus, sequential execution time = O(n?).

In theory, all n?dot products can be done on n? processors in parallel
(An embarrassingly parallel computation problem).

In reality, n is very large and n®is even greater,

It is impossible to exploit the full parallelism.

With N processors, where N << n, we cando itin O(n2 /N) time
Thus, the Speedup = O(n®) / O(n® /N) ~ O(N) is possible.

When n'is very Large — Computational' Cost

® Reading and storing large number of input and output matrix

elements demand excessive /O time and memory space

Data reference locality demands many duplications of; the row
and column vectors to local processors

B’ The Map functions in MapReduce model.

Dot products can be done on the Reduce Nodes
in parallel blocks identified by “keys”

Demand large-scale shuffle and exchange sorting and grouping
operations over all intermediate <key, value> pairs, even
externally in and out of disks.

The task fork out from the master server to all available Map
and Reduce servers (workers) may result in scheduling
overhead.

Ideas of Parallel Matrix Multiplication

Each time unit counts the time to carry out the dot product of
two n-element vectors. (repeated multiply-and-add operations
over a row vector. of A and a column vector, of B).

In the sequential execution, it take n2time units to generate the
nZ output elements in the product matrix C. Here, the example
matrix has an order n = 1,024.

If you partition the matrix into 16 equal blocks (64 x 64 each).
Then, only 256n output elements are generated in each block.
Thus 16 blocks can be handled by 16 VM instances in parallel.

In theory, the total execution time should be shortened to 1/16
of the total sequential execution time, if all communication and
memory-access overheads are ignored.

ldeas of Parallel Matrix Multiplication

Input Matrix
partitioning

by row vectors of
matrix A and by
column vectors of
matrix B or by row
vector of the
transposed matrix
BT

Matrix A

sign exponent8-bit) fraction (2 3-bit)
Iy 1
00111110001 000000000000000000000 =0.15625

31 23 o

Dot Product
Parallelization into
Blocks affect the Reduce
speed and efficiency in
the computation section
of the entire MapReduce
process.

Matrix C

Parallel Matrix Multiplication (cont.)

Similarly, if you use 64 VM instances, you should
expect a 1/64 execution time. Use up to the
maximum number of 128 machine instances, If it
IS allowed in your assigned Amazon account.

In the extreme case of using n? instances (1 M or
220 instances), you may end up with only one
time unit to complete the total execution. That is
not allowed in the AWS platform, realistically
speaking.

Hadoop and Amazon Elastic MapReduce

= A software platform originally developed by Yahoo to
enable user write and run applications over vast
distributed data.

» Attractive Features in Hadoop:
» Scalable
* Economical: an open-source MapReduce
 Efficient
* Reliable

AWS Usage Growith

Bandwidth consumed by
Amazon Web Services

Bandwidth consumed by
Amazon’s global websites

Table 4.6 Amazon Web Service (AWS) Offerings in 2011

Service Area

Service Modules and Abbreviated Names

Compute

Elastic Compute Clouyd (EC2), Elastic MapReduce, Auto Scaling

Messaging

Simple Queue Service (SQS), Simple Natification Service (SNS)

Storage

Simple Storage Service (53), Elastic Block Starage (EBS), AWS Import/Export

Content Delivery

Amazon CloudFront

Menitory

Amazon CloudWatch

Support

AWS Premium Suppart

Datbage

Amazon SimpleDB, Realational Databasae Service (RDS)

Networking

Virtual Private Cloud (VPC) (Example 4.8), Elastic Load Balancing

Web Traffic

Alexa Web Infarmation Service, Alexa Web Sites

E-Commerce

Fulfillment Web Service (FWS)

Payments and Billing

Flexible Payments Service (FPS), Amazon DevPay

Workforee

Amazan Mechanical Turk

The AWS Platform

Major: Service Modules for. 1aaS on the AWS
Platform

Amazon Application

Services

Simple DB EC2 SQS

Controller

Launch Monitor Shutdown Billing
Controller Controller Controller Controller

Amazon Physical Infrastructure

Amazon Web Services (AWS)

The AWS Infrastructure Platform

Monitoring Management Tools Isolated Networks
Amazon CloudWatch AWS Management AWS Toolkit for Amazon Virtual
Console Eclipse Private Cloud

Parallel Content Messaging Payments On-Demand
Processing Delivery Amazon Simple Alma_z&1n Workforce
Amazon Elastic Arazon Queue Service Flexible Amazon

Payments Mechanical
Hlaukeduce CloudFront (sQs) TR chanica

Compute Storage
AmazoanIastic Amazon S?mple Database

Compute Cloud (EC2) Storage Service (S3) Amazon RDS

-Elastic Load Balancing -AWS Import/Export Amazon SimpleDB
-Auto Scaling

(Courtesy of AWS, 2012)

Copyright © 2012, Elsevier Inc. All rights reserved.

Amazon EC2 Execution Environment

Amazon Machine Image

Private

,// Create Create
il
,r’/ Configure

- Elastic IP address
- Elastic Block Store

Virtualization Layer ’

g

Storage Server

Amazon Machine Images (AMI)

Image Type | Definition

Images created by you, which are private by default. You can grant access

Sats to other users to launch your private images.

Images created by users and released to the Amazon Web Services
community, so anyone can launch instances based on them and use
them any way they like. The Amazon Web Services

Web site lists all public images.

You can create images providing specific functions that can be launched
by anyone willing to pay you per each hour of usage on top of Amazon
charges.

® AMI is a packaged server environment in EC2, based on Linux running any
user software or application. AMIs are the templates for VM instances.

® Elastic IP address is specially reserved for EC2. Elastic Block Store offers
persistent storage for EC2 instances.

Copyright © 2012, Elsevier Inc. All rights reserved.

AWS Virtual Private Cloud (VPC)

Customer s isolated
AWS resources

Subnets

Secure VPN
Connection over
the internet

Customer's
Network

Figure 7.28 Amazon Virtual Private Cloud VPC (http://aws.amazon.com/vpc/)

http://www.ibm.com/developerworks/opensource/library/ar-cloudaws3/index.html#resources

Amazon S3 for Sterage Provisioning

Object is the
basic unit of data

Object

Bucket for storing Key

Value

I . Meta—data
objects ® ‘,

Access
Control

Key for data
object retrieval

Object is
attributes to
values, metadata,
and access
control

Hadoop and Amazon Elastic MapReduce

The Hadoop project is an open-source collection of projects all aimed at bringing distributed scalable data
processing to the masses. Hadoop is a distributed computing platform written in Java. It incorporate
features similar to those of the Google File System and of MapReduce to process vast amounts of data

Amazon Elastic MapReducc is a web service that enables businesses, researchers, data analysts, and
developers to easily and cost-effectively process vast amounts of data. It utilizes a hosted Hadoop
framework running on the web-scale infrastructure of Amazon Elastic Compute Cloud (Amazon EC2) and
Amazon Simple Storage Service (Amazon S3).

Copyright © 2012, Elsevier Inc. All rights reserved.

11

The MapReduce library in the user program first splits the input files into M pieces and then starts up
many copies of the program on a cluster of machines. One of the copies of the program is the master. The
rest are workers that are assigned work by the master. There are M map tasks and R reduce tasks to assign.

The master picks idle workers and assigns each one a map task or a reduce task. A worker who is assigned
a map task reads the contents of the corresponding input split. It parses key/value pairs out of the input
data and passes each pair to the user-defined Map function. The intermediate key/value pairs produced by
the Map function are buffered in memory.

Copyright © 2012, Elsevier Inc. All rights reserved.

Python Code Solution by Risheng Wang, USC,
2011

Input Files for left Matrix A and right Matrix B

The original input files are two 1024 by 1024 matrix. Each file contains 1024 numbers and there are 1024
lines in total. However, in order to do the MapReduce efficiently, I preprocess these input files in following
way:
1. The B matrix (ie. right matrix) is transposed. In other words, each line in the file contains a column
of marrix B.
2. Two more fields are inserted below each line for both matrix A and B.
a. The first filed (L/R field) is used to distinguish lines from matrix A and those from matrix B.
lts value is either ‘L" (Left Matrix A) or ‘R” (Right Matrix B).
b. The second filed is line number G.e. row/column number of matrix A/B)

(Courtesy of R. Wang, USC, 2011)

Copyright © 2012, Elsevier Inc. All rights reserved.

12

Input Files for left Matrix A and right Matrix B

Matrix A (Alnput.xo

L 0 4B37BC83 51EFDEYE 36AE5EE7 26687FD5 3335F2CC 5613B65E ...
L 14291E86E 36035049 29400BFB 50E7A29A 3DCC6DC2 4311BA3D ...

L 1023 2BA21DFS 33B5D026 2AB93D52 527ACB15 5A34AE24 ..

Matrix B (Blnput.txt)

R0 43309A27 4FB74074 4C926D41 3399E730 3F6D7ABD 4EAB174B ...
R 1495B3C1B 4596BDD8 53147CC6 2AB604AA 4BB006E5 28FBF6EC ...

R 1023 4DE251DF 3C629BES 434846E7 30D36D2A 25E578F0 24888940 ...

Copyright © 2012, Elsevier Inc. All rights reserved.

The Output File for Matrix
C

The final output matrix (Matrix C) is divided into blocks. Assume that the block size is BLOCKSIZE
(=1024, 512, 256,128 ... The number of blocks in each row/column is 1024/BLOCKSIZE (=1, 4, 16,
64..). The map function is used to duplicate the input lines (rows and columns) for 1024/BLOCKSIZE

times so that each block can have its required rows and columns. For example, if the number of blocks in

cach row s 4, each line in matrix A should be duplicated 4 dimes. If number of blocks in each column is 4,

cach line in transposed matrix B should also be duplicated 4 times. In my experiment, the number of
blocks in each row and column are always same.

Copyright © 2012, Elsevier Inc. All rights reserved.

13

The Output File for Matrix
C

Mapper
The map function reads the inpucs lines of two matrices and dispacch/duplicate chem for corresponding
blocks. The intermediate key/value pair is like this:

Key Value Block number is the key

[block number} | [L/R}:[Line Number}:[values of currenc line]

The block number can be calculated as ib*NB+jb, where ib = row index of the block, jb = column index of
the block, NB = the total number of blocks in each row.

Copyright © 2012, Elsevier Inc. All rights reserved.

The python code of map function is shown below

MatMulMapper.py

#!/usr/bin/env python

Auchor: Risheng Wang (ruishenw@usc.edu)
Date: 3/11/2011
Note: This scipt is the mapper for Matrix Muldplication with Hadoop MapReduce.

import sys

BLOCKSIZE must be the intergral power of two
BLOCKSIZE = 128
TOTALSIZE = 1024

number of blocks for Martrix A/B NB = No. of blocks in each
NB = TOTALSIZE/BLOCKSIZE row
(or in each transposed

input comes from STDIN (standard inpeglumn)
for linc in sysstdin:

remove leading and trailing whitespace

line = linestripO

parse the input

A_B, lineno, row_value = line.splic(" ',2)

Copyright © 2012, Elsevier Inc. All rights reserved.

14

if A B-- "L" : ib = row index of each
ib = (ino)(lineno)/BLOCKSIZE; ' block
for jb in l‘&lllgC(NB): jb = column index of the
che key is the BLOCK Number. P10k
intermediate_key = "%05d"%G{b*NB+jb)
the value is the {L/R}:{LineNo}:{values of current line}
intermediate_value = "L:%s:%s"%(lineno, row_value)
key and value are seperated by a tab
print “%s\t%s"%(intermediate_key, intermediate_value)
if A B=="R": - :
jb = (in0ineno)/BLOCKSIZE; plocke
for ib in range(NB): o n each . NB + b
= Block

intermediate_key = "%05d"%(ib"NB+jb) [number
intermediate_value = "R:%s:%s"%(lineno, row_value)
print "%s\t%s"%(intermediate_key, intermediate_value)

Copyright © 2012, Elsevier Inc. All rights reserved.

Reducer
The incermediace key/value pairs will be sorted by key. And the lines for the same block will go to the same

reducer. After the reducer collects all che lines (both rows and columns) for a block, it will perform matrix
muldplication. The code of reducer is shown below

MacMulReducer.py
#1/usr/bin/env python
Author: Risheng Wang Gruishenw@usc.cdu)

Dace: 3/11/2011

Note: This scipr is che reducer for Macrix Muldiplication with Hadoop MapReduce
import sys

import binascii
import scruce

BLOCKSIZE 128
TOTALSIZE 1024

NB -~ TOTALSIZE/BLOCKSIZE
LefeMacrixBlock (]
RighcTransposcMartrixBlock — ||

roral number of lines Gwithin a block),
nl 0

oldblockno 1
blockno 1

Copyright © 2012, Elsevier Inc. All rights reserved.

for line in sysstdin:
for debug
#aol=nl+1

nl-nl+1

remove leading and trailing whitespace
line = line seripO

parse the input

input_key, input_value = line splicC\¢’, 1)

for debug
print input_key

blockno = int(input_key)
A_B, index, row_value = input_value splic(:)

if A_B=="1L".
LefdMarrixBlockappend(row_value splic(")
if AB-—="R":
RightTransposeMartrixBlock append(row_value splic(")

Copyright © 2012, Elsevier Inc. All rights reserved.

an block is finished
if (nl == 2*BLOCKSIZE):
reset nl
nl=0
prine block number to mark the outpuc

print blockno, BLOCKSIZE

outpur & muldiply and sum

res = |10 for col in range(BLOCKSIZE)| for row in range(BLOCKSIZE)|
for i in range (BLOCKSIZE) -
for j in range (BLOCKSIZE) -
for kin range (TOTALSIZE) :
lefe_val = struccunpack("!f" binascii a2b_hex LefeMatrixBlocklillk!)[0]
right_val = scrucc unpack("!f* binasciia2b_hex(RightTransposeMatrixBlockljl[k[)(0]
reslillj| += left_val * right_val FMultiply-and-Add (
print reslil[j,
sysstderrwrite(‘reporter.counter:matmul rotalnum, %d\n'%(BLOCKSIZE))
rint
delchfMatrixBlock[:I
del RightTransposeMatrixBlockl |

Copyright © 2012, Elsevier Inc. All rights reserved.

16

Output

The outpuc of reducer is formateed like this:

Block number

The final results of this block G.c. a BLOCKSIZE by BLOCKSIZE matrix)

An example is shown below A submatrix (128x128) for

- 14
Pare-00000 the block size ic 128
0 <ir PDIVUUN JIACT 1O 4 40

2.4373216327c+32 3.88248143835¢+31 519607198289 3859K54952612¢+30 ...
=
9.21375889096¢+31 2.54720909701¢+30 244615706762c+32 3 .8188708317¢+32 ..

Note thar one outpur file may conrain the resules of multiple blocks. The number of ourpur files is

depended on the number of reduce tasks Gwhich is equal to the number of instances in my experimeno in
the system. The outpur files are named like parc-00000, pare-00001 ... and so on

Copyright © 2012, Elsevier Inc. All rights reserved.

Performance Results

The figure below shows the execution time (blue line wich primary y axis) and efficiency (red line with
secondary y axis) of matrix muldplication implementacion wich different number of instances (up o 20).
The Python is a script language, and its performance is much lower than C/Java (more than 100 times
slower [8]). To run a 1024 by 1024 martrix multiplication in a single instance Cwith one partition) needs

more cthan two hours (9225 seconds). Wich the number of instances increase, the execution time is

reduced rapidly. Wich four instances, it finishes in only half of time (4647 seconds) compared to single
instance case. When number of instance reaches 20, the execution time is only about 15 minutes (938

seconds).
The efficiency (with n instance) can be calculated as chis:

Speedup = execution time with one instance / execution time with n instances

Efficiency = Speedup / n

The red line (with secondary y axis) shows the efficiency of MapReduce matrix multiplication witch
different number of instances. As we can see from the figure, the efficiency is below one when the number
of instance is larger than one. This is because not all the operations in MapReduce Matrix Multiplication

can be paralleled. The serial operations in the MapReduce job flows includes all the operations done by

master, like assign workload to mappers and reducers. Sortting intermediate key/value pairs are also part of
serial operations. With the number of instance increases, the efficiency decreases. This is because serial
operation takes larger and larger portion of execution time.

Copyright © 2012, Elsevier Inc. All rights reserved.

17

Results

Tme (sec)

Efficiency

8 12

number of instances

==g==Execution Time ==l=Efficiency

Figure 2 Performance and Efficiency of MapReduce matrix multiplication with different number of instances

Copyright © 2012, Elsevier Inc. All rights reserved.

Results on Computing Time
and Communication Time

B communication time

B compulation lime

Execution time (s)

12 16 20 32 64 96 128
Number of hosts

Copyright © 2012, Elsevier Inc. All rights reserved.

Some Observations :

Block size is very sensitive to the speedup performance and
implementation efficiency of the MapReduce process. The
optimal choice should match with the cache size of the server
nodes used.

The speedup is slowed down by many overhead factors, such
as data I/O and replication times, intermediate < key, value>
matching, storing and retrieval, sorting and grouping, and the
parallel task scheduling overheads, etc.

The optimal number of server or VM instances is a direct function
of the matrix order (n), effective dot product computing using
GPU subcluster, and the reduction of all sorts of delays caused
by parallelism handling, communication latency, memory and
I/O overheads, etc.

Copyright © 2012, Elsevier Inc. All rights reserved.

19

