

Lab Activities

LAB 4 MATLAB Exercise Lab- By P. Lin

- 1. Plotting Ohm's law (R = 5 ohms, E = 0 to 30V)
- 2. Plotting R1 (1 ohms), R2 (10 ohms, E = 0 to 30V on the same plot
- 3. Calculations for a circuit with 3 resistors in series

Feb. 6, 2012

LAB 4 MATLAB Exercise Lab- By P. Lin

2

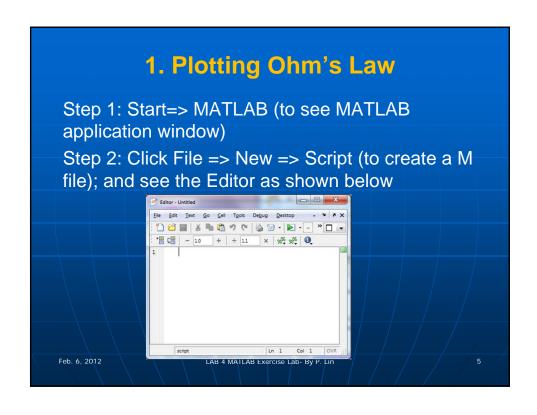
1. Plotting Ohm's Law

Problem Statement:

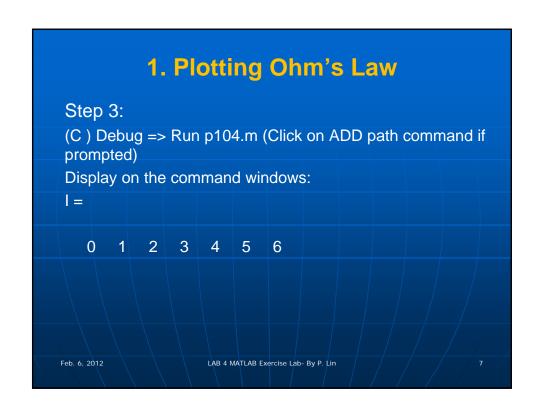
 Build a MATLAB simulation circuit for a variable power supply (E = 0 to 30V), an ammeter, and a 5 Ohms connected in series. Write a simple MATLAB program to plot E vs. I (Ohm's law)

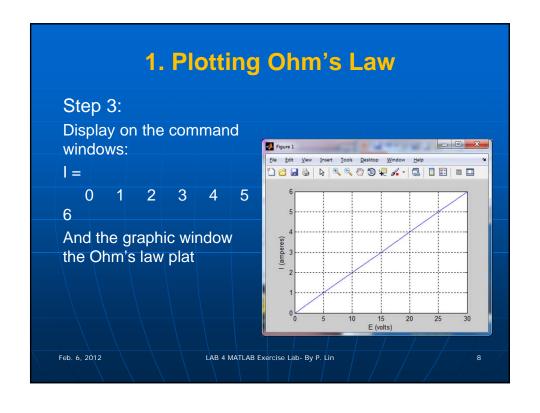
Feb. 6, 2012

LAB 4 MATLAB Exercise Lab- By P. Lin


1. Plotting Ohm's Law

Solution:


- R = 5 Ohms
- E = 0, 5, 10, 15, 20, 25, 30 Volts (changed from 0v, increment by 5 v, with the highest voltage 30 V)
- Compute current I for each of the adjusted voltage value


Feb. 6, 2012

LAB 4 MATLAB Exercise Lab- By P. Lin

2. Plotting Two Resistors

Solution:

- R1 = 1 Ohms, R2 = 10 Ohms
- E = 0, 5, 10, 15, 20, 25, 30 Volts (changed from 0v, increment by 5 v, with the highest voltage 30 V)
- Compute currents I1, and I2 for each of the adjusted voltage value

Feb. 6, 2012

LAB 4 MATLAB Exercise Lab- By P. Lin

9

2. Plotting Two Resistors

MATLAB Solution:

- File => New => Script (create a new script file)
- Enter the following statements, then save it as p105.m

```
R1 = 1;
```

R2 = 10

E = 0: 5: 30;

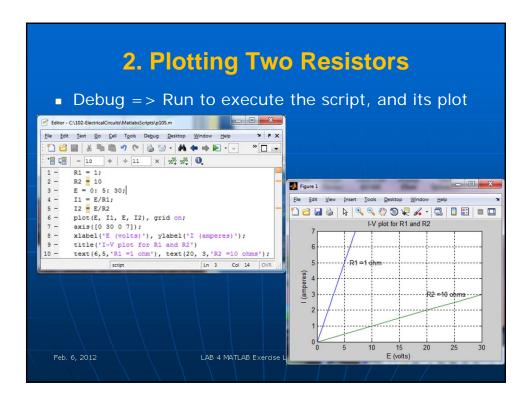
I1 = E/R1;

I2 = E/R2

plot(E, I1, E, I2), grid on;

axis([0 30 0 7]);

xlabel('E (volts)'), ylabel('I (amperes)');


title('I-V plot for R1 and R2')

text(6,5,'R1 =1 ohm'), text(20, 3,'R2 =10 ohms');

Feb. 6, 201:

B 4 MATLAB Exercise Lab- By P. Lin

10

3. Three Resistor in Series Example 3: Calculating Series Resistance, Current in the circuit, voltage drops across each resistors R1 = 10ohms, R2=20ohms, and R3 =40ohms; and power supply voltage is E = 10V. Problem Statement: You are asked by your supervisor to design a MATLAB program for your colleague. This program should allow the user to calculate the total series resistance of a circuit.

3. Three Resistor in Series (continue)

- Problem Solving Process and Steps:
 - Define the problem
 - Formulate a mathematical model
 - Develop an algorithm
 - Write the code for the problem
 - Test program and verify the solution
 - Document the program and solution

Feb. 6, 2012

LAB 4 MATLAB Exercise Lab- By P. Lin

13

3. Three Resistor in Series (continue)

- Problem Solving Process and Steps:
 - 1. Define the problem
 - 2. Formulate a mathematical model Total R = R1 + R2 + R3 + ... + Rn
 - 3. Develop an algorithm
 - Step 3.1: User input R1, R2, R3, ... Rn, one at a time
 - Step 3.2: Compute subtotal resistance
 - Step 3.3: Repeat until the end of resistance entering
 - Step 3.4: Print total resistance
 - Step 3.5: Calculate total circuit current
 - Step 3.6: Calculate voltage drops V1, V2, V3
 - 4. Write the code for the problem

Feb. 6, 2012

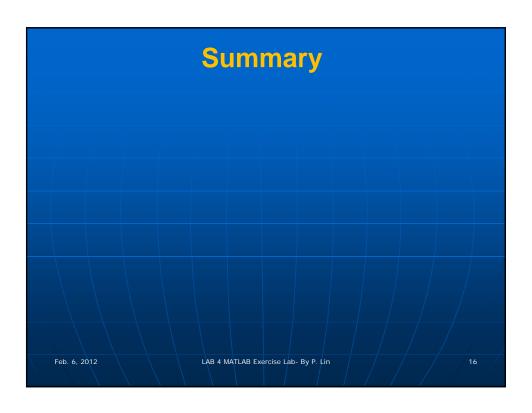
LAB 4 MATLAB Exercise Lab- By P. Lin

14

```
3. Three Resistor in Series -
                       Solution
                                     >> E = 10;
MATLAB Solution 1
                                     >> r1 = 10; r2 = 20;

    Understand who users

                                     >> r3 = 40;
      are
   • How to input resistance
                                     >> r_{total} = r1 + r2 + r3
     values?
                                     r_total =


    The mathematical

                                        70
      model or equation
                                     >> I = E/r_total;
   Total R = R1 + R2 + R3 +
                                     >> V1 = I*r1; V2 = I*r2;
      ... + Rn
                                     >> V3 = I*r3;

    How to display or print

                                     >> E - (V1 + V2+ V3)
     total resistance value?
                     E = 0

LAB 4 MATLAB Exercise Lab- By P. Lin
```

