ECET 102/CPET101 Lab 7 Thevenin's Theorem

By Prof. Paul I. Lin

Required Devices & Equipment:

Resistors: $1k\Omega \times 2$, $820\Omega \times 1$, $100\Omega \times 1$

Potentiometer 10kΩ x 1

Bread board x 1 with wires, wire strippers and cutters

Variable Power Supply x 1 Digital Multimeter (DMM) x 1

Objectives:

- 1. Learn to find a Thevenin equivalent circuit from a more complex circuit using circuit circuits analysis.
- 2. Using a computer simulation to verify the Thevenin equivalent circuit.

Procedure:

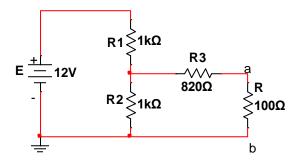


Figure 1. The Circuit for Lab 7

Part 1. Calculation

For the circuit shown in Figure 1, perform the following calculations:

- (a) Find the current through, and the voltage across the resistor, R.
 - 1) Calculate the total circuit resistance RT = ((R3+R) || R2) + R1) = Ohms.
 - 2) Calculate the total circuit current It = E/RT = ____ mA.
 - 3) Calculate the voltage drop across R2, namely V2 = E It * R1 = Volts.
 - 4) Calculate the current passing through R3 and R, namely Ir = V2/(R3 + R) = _____ mA.
 - 5) Calculate the voltage drop across R, called Vab = Ir * R = _____ Volts
- (b) Find the Thevenin equivalent circuit for the network external to the resistor, R,, namely Eth and Rth.
 - 1) Remove R from the circuit, as shown in Figure 2, then find open circuit voltage across a and b points called Vab = Eth = E * (R1 / (R1+ R2)) = Volts.

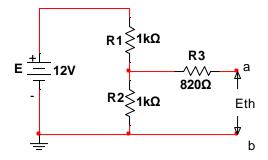


Figure 2. Subcircuit for finding Eth

2) With E removed, as shown in Figure 3, find the circuit resistance called Rth = (R1 || R2) + R3 = _____ Ohms.

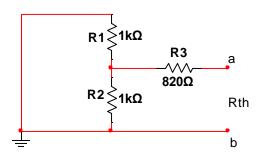


Figure 3. Subcircuit for finding Rth

(c) Using the values calculated for Eth and Rth, as shown in Figure 4, calculate the current through, and voltage across the resistor, R.

$$Ir = Eth/(Rth + R) =$$
_____ mA
 $Vab = Ir * R =$ ____ $Volts$

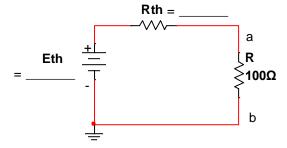


Figure 4. Thevenin equivalent circuit

(d) Compare the results from (a) and (b)

Part 2. Computer Analysis

- (a) Construct the circuit shown in Figure 4, using Multisim.
- (b) Add an ammeter and a voltmeter to measure the current through R, and voltage across.

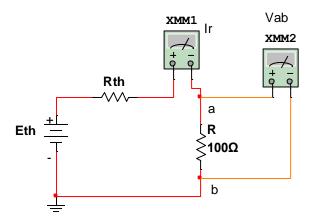


Figure 5. Thevenin equivalent circuit using Multisim Simulation

Part 3. Measurement

a) Construct the circuit shown in Figure 1, and measure the current through and the voltage across R.

- b) Using the values of Eth and Rth calculated in Part 1, duplicate these values with the power supply and a potentiometer.
- c) Measure the current through and voltage across the resistor R.

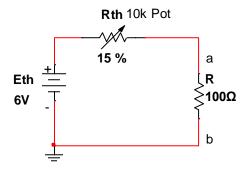
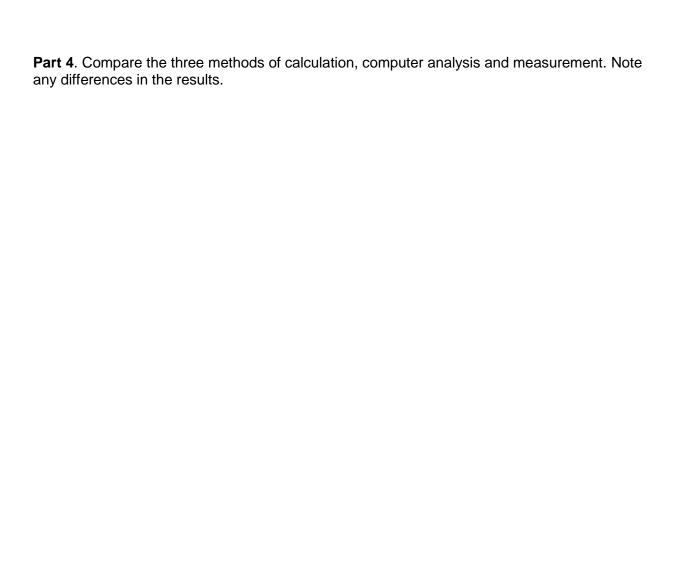



Figure 6. Thevenin equivalent circuit for measurement

