

Solar Mini-Blind with DC-DC Converters for 5V Charging Applications

By Joshua Stetzel, CPET 491 Senior Design Project II, May 5, 2017

Faculty Advisors: Hadi Alasti, and Paul I-Hai Lin,

http://www.etcs.ipfw.edu/~lin

Department of Computer, Electrical and Information Technology College of Engineering, Technology and Computer Science

Abstract

A solar power charging system consisting of solar cells mounted on a mini-blind with DC-to-DC converters and super capacitor storage with voltage regulation circuit was designed for 5V charging applications such as smartphones or any **USB** powered devices.

HARDWARE SUBSYSTEM

PURPOSE: The purpose of my project is to eliminate some of the strain put on the electrical grid by removing the daily charging of my cell phone from it, and instead utilizing solar energy for this purpose.

Buck Converter

SOLAR Mini-Blinds INTEGRATION AND TESTING

Voltage	Current	Load resistance
10V	300mA	35Ω
12V	280mA	41Ω
24V	200mA	165Ω
25V	170mA	193Ω
26V	130mA	260Ω
26V	100mA	355Ω

CONCLUSION

CIRCUIT DESIGN

Currently solar panels and supercapacitors are too expensive to be practical for this application, however, as the manufacturing processes become refined and materials can be made cheaper and more efficiently, these technologies could become viable in the near future.