USB-Based Data Acquisition System for Current and Temperature Monitoring of DC Motor

Fall 2013

Honore Hodary

Motivation

- Overheating is one of the most common cause of failure in DC motors. It can lead to bearings failure (motor jam), winding-isolation (short-circuit), and degradation of the magnets.
- The amount of current drawn and the temperature generated by DC motor are crucial in understanding the performance and reliability of motors.
- Provide a low cost and effective tool for measuring the amount of current drawn and heat generated by DC motors.

Goals

- Provide a cost effective mechanism for acquiring temperature and current data.
- Allow the operator to determine when to perform preventive maintenance.
- Record the temperature and current data to a host computer.
- Display current and temperature data on LCD
- Design a compact, portable, and user friendly system.

Functional Requirements

- Measure the heat (temperature) generated by the motor.
- Measure the amount of current drawn by the motor.
- Record temperature and current data to a host computer for later analysis.
- Display current and temperature data on LCD display.

Specification

- Measured temperature shall be in the range of o to 300 degrees Fahrenheit.
- Measured current shall be in the range of 1 to 15 A.
- The temperature accuracy shall be within +-2 degrees Fahrenheit.
- The current accuracy shall be within +-100 mA
- Both temperature and current should be transmitted to a host computer every 60 seconds.
- The operating temperature shall be between 0 and 100 degrees Fahrenheit.
- The system shall not exceed 4 lbs.

Subsystems

- Sensors module
- Power supply module
- Microcontroller module
- Data display module
- Data storage module
- Signal conditioning module

Sensors Selection Criteria

- Transfer function must be linear
- Response time must less than 100 ms
- Must have great accuracy
- Noise level must be less than 100 mV
- Dynamic range must be between o A and 15 A
- Must be easy to use

TLS 15-NP Current Sensor

• Type: Hall Effect

• Maximum measure current: 15 A

• Supply voltage: 5V

• Supply current: 1.6 mA

Output type: voltage

• Response time: <100 ns

• Sensitivity: 41.6 mV/A

CSLA2CD Current Sensor

❖Type: Hall Effect

♦ Max Current: 72 A

❖ Supply Current:10 uA

❖Supply Voltage: 8V - 13.2V

❖Output type: Voltage

❖ Response Time: 3us

❖ Sensitivity: 32.7 mV/A

Sensors (Continued)

- Temperature Sensor (LM₃₄)
 - □ Internally calibrated
 - □Linear Output: 10mV/Degree Fahrenheit
 - ■Supply Voltage: 5V to 3oV
 - ■Supply Current:75 uA
 - □ Response Time: 750 mS
 - Measurement Range: -50 to 300 Degrees Fahrenheit
 - □Accuracy: +-2 Degrees

LM34 Sensor LM34 sensor

DS1820

- Dynamic range: -67 to 257
- Accuracy: 0.5 degrees Fahrenheit
- Resolution: 10 bits
- Cost: \$6.00

Op Amp Selection

- LM 741
 - Dual power supply
 - Well balanced
 - Easy to use
- CMP601
 - Single supply
 - Requires virtual ground
 - Hard to design

Power Supply Wall adapter Input: 110V - 125V Output: 12V Current: 1A Regulator Type: LM7805 Voltage: 5V Current: 1A

USB Communication Module

- FT232R Controller
 - Provides communication channel between the MCU and the host computer.
 - Converts USB port to Virtual COM port in the host computer.
 - Manages enumeration and other USB bus communication requirements in hardware.
 - No USB specific firmware required.
 - Supports Bus-powered and Self-powered.
 - USB 2.0 full-speed compatible.

USB Controller (continued)

• Operating temperature: -40 to 85 degrees C.

• Supply voltage: 1.8V to 5.25V.

• Supply current: 15mA

• Data transfer: 300 baud to 3 Mbaud.

Microcontroller

- PIC18F4550
 - Analog-to-digital conversion (ADC)
 - Process temperature and current data.
 - Transfers temperature and current data to the host computer.
 - Display temperature and current data on LCD display.

Microcontroller

- Communication With USB Controller
- Communication With DAC
- Communication with LCD display

Microcontroller (continued)

• Supply voltage: 2V to 5.5V

• Supply current: 5.8 uA

• Sink/source current: 25mA

• Clock: Internal and external oscillator.

• Timers: 4

• ADC resolution: 10-bit

• Analog channels: 13

• Interrupt sources: 20

Software: Microcontroller

- □ Programming language: C
- Program
 - Initialization
 - Configure ports
 - Configure ADC
 - Configure USART
 - ADC Conversion
 - Reads data from analog channels
 - Format data
 - Data transfer/display
 - Transfer data to the host computer
 - Display data on LCD display

Testing and Validation

Cost and Resource Management

Part Name	Quantity	Price Per Unit	Total	Actual Amount of
			Cost	Money Spent
MCP601 Op Amp	6	\$0.60	\$3.60	\$3.60
TLS 15-NP Current Sensor	1	\$17.00	\$17.00	\$17.00
LM34DZ Temperature sensor	1	\$6.60	\$6.66	\$6.60
Resistors	17	\$12.00(per kit)	\$12.00	\$0.00 (Had it)
Capacitors	15	\$9.00 (per kit)	\$9.00	\$0.00 (Had it)
UM232R USB-to- UART Converter	1	\$11.00	\$11.00	\$21.00
PIC18F4550	1	\$6.90	\$6.90	\$0.00(Had it)
Terminal Blocks	2	\$1.00	\$2.00	\$0.00 (removed from power supply)
Barrel power Jack	1	\$3.00	\$3.00	\$0.00 (removed from an old router)
Diode	2	\$6.00 (per kit)	\$12.00	\$0.00 (purchased two years ago)
Oscillator	1	\$4.00	\$4.00	\$0.00 (Had the part in my tool box)
Total			\$97.16	\$48.20

Risks

- The microcontroller not sending data to PC
- The temperature sensor not being attached to the motor

Lesson Learned

- Project management
 - Planning is key to a successful project
 - Always buy extra components in case one get damaged
- Gained valuable experience in analog signal conditioning
- Gained experience programming PIC microcontroller

Conclusion

- All features of the USB Based Data Acquisition System were successfully implemented
- The cost of designing the UBS Based Data Acquisition System was well bellow \$100
- Did not have enough time to focus on the project as given my work related responsibilities
- Overall, this was a very rewarding experience

Thank you.

Questions?