

INTRODUCTION

• Wind generation to produce useable electricity is one of

forefront choices to alternative energy.

• As climate change pops up in the news, some individuals are taking action to reduce their carbon footprint.

OBJECTIVE

- The objective for this project is to learn how a wind turbine works to produce electricity from the spinning of the blades to the battery bank to the making a light bulb shine.
- Many ways to construct a wind turbine system
 - Simplest way is to source a PM motor and blades
 - One of the hardest ways is to build everything from the ground up

3

RESEARCH

- Two kinds of wind generators
 - HAWT rotating axis is parallel with ground
 - Produces more power but heavy construction
 - VAWT perpendicular to ground
 - Potential to produce power with wind coming from all directions

 $oxed{4}$

VAWT type

HAWT type

RESEARCH

Initial questions to ask

- 1) What are my surroundings?
- 2) What is average wind speed?
- o 3) On/Off grid?
- 4) Monthly power use?
- 5) Charging voltage?
- o 6) Battery bank size?
- 7) What local, state, federal regulations are there for mounting a tower?

These questions will give insight on feasibility

RESEARCH

- o Find wind chart data for your area
 - Through government website or Internet search

http://www.windpoweringamerica.gov/windmaps

RESEARCH

- Internet search for wind turbines
 - Menard's, Lowe's, Cabela's, Northern Tool
- o Most range between 600 − 2000 Watt
- o Prices easily up to \$2,000 plus you will need
 - · Charge control, energy dump, wiring
- Additional features = more \$\$
 - Tail fin, braking (electrical or mechanical)

9

RESEARCH

- The best approach to compare wind turbines is looking at the datasheet
- What is OCV?
- What is SCC?

SPECIFICATIONS

Rated Power	100 W		
Blade Rotor Diameter	5-6 ft		
Rated average wind speed	5-15 mph		
Max RPM	up to 300		
# of blades	up to 5		
Blade material	Aluminum/Wood		
Charging Voltage	$12 \mathrm{Vdc}$		
Suggested Battery Capacity	>30 A/hr		
Rated Load Current	Up to 8 A		

111

CALCULATIONS

- Watts = ½*air density*swept area*wind velocity^3
- \circ Air density = 1.23 kg/m³ at sea level
- Swept area = πr^2
- Wind velocity is in meters per second
 - 1 m/s = 2.237 mph
- Expected Watts uses the Betz Limit of 59.3%
 - Small turbines will be up to 35%

CALCULATIONS

- Tip speed ratio (TSR) = $\frac{\text{Tip speed of blade}}{\text{wind speed}}$
- Wind speed (V) = $\frac{2\pi r}{Time(T)}$

of Blades Optimum TSR

2 ~6
3 ~4-5
4 ~3
5-6 ~2-3

HARDWARE DESIGN

- Wind Turbine and blades
 - Bought in a kit from www.windbluepower.com
 - Model # DC-540
 - Aluminum blades
- Volts to RPM ratio
 - DC-540 delivers 350V at 2500 RPM = 0.14
 - · Rule of thumb what voltage will be at each RPM

19

SOFTWARE DESIGN

- o Arduino Leonardo
 - 13 digital out pins
 - 6 analog input pins
- o Arduino controls 5Vdc relay board
- When battery voltage reaches:
 - 10.6Vdc Battery backup
 - 11.0 to 11.5Vdc Fast Charge
 - 11.5 to 11.9Vdc Trickle Charge
 - 12.4Vdc all relays off
 - 13.5Vdc Energy dump

SYSTEM INTEGRATION

- Items needed are various hand tools and a voltmeter
 - An oscilloscope is great to see waveforms
- Assemble wind turbine & blades make sure it spins
- Measure voltage coming from 3 phase harness
- o Close fuse block and measure rectified voltage
- Wire up battery & charge controller

21

SYSTEM INTEGRATION

- Test software & modify
- Cordless drill and socket to spin blades

Green are calculated values

Batt Volts	ADC # Equiv
13.5	730
12.5	680
12.3	640
12.2	635
12	625
11.9	600
11.8	583
11.7	575
11.5	565
11.4	555
11	540
10.5	515

BUDGET	

	WIND TURBINE PROJECT				
		PRICE	QTY	SUB TOTAL	
١	PM motor & blades kit	\$ 485.00	1	\$ 485.00	
١	Display	\$ 40.00	1	\$ 40.00	
	3 PH Rectifier				
	3 PH fuse block	Borrowed	1	Borrowed	
	3 PH AC Rectifier	Sample	2	Sample	
	Heat sink	\$ 25.00	1	\$ 25.00	
١	Excess Energy Dump				
	LM2917	Sample	3	Sample	
	Transformer	Sample	3	Sample	
	Misc Components	\$ 10.00		\$ 10.00	
	Resistor Bank	\$ 39.00	1	\$ 39.00	

23

BUDGET

Arduino	\$ 36.00	1	\$ 36.00
Aldullo	\$ 30.00	1	\$ 30.00
Relay Board	\$ 16.00	1	\$ 16.00
DC Voltage Monitor	\$ 10.00	1	\$ 10.00
Battery Bank, 12Vdc	\$ 53.00	1	\$ 53.00
Inverter, 12Vdc to 120Vac	\$ 38.00	1	\$ 38.00
Base and stand	\$ 19.00	1	\$ 19.00
		Total	\$ 752.00

LESSONS LEARNED

- How a wind turbine system works
- What the individual components are
- How to program the Arduino
- Calculations are a must from wire sizing to resistor banks to expected power from the wind turbine
- How to read a wind turbine datasheet

25

CONCLUSION

- Deeper understanding how wind turbines work
- Understanding how system is put together
- Arduino provides great flexibility and ease of use
- Make sure to use the Betz Limit when calculating

RECOMMENDATIONS

- Utilize the Arduino to implement a wireless telemetry system
- Look into developing an Arduino package that would require less power to run for off the grid
- o Display the RPMs of the wind turbine
- Place the electronics into a Nema 4 enclosure to provide easy access and a way to mount everything to the stand

27

RECOMMENDATIONS

- Increase the charging voltage to 24Vdc or 48Vdc to provide a more efficient way to charge batteries and require smaller gauge wiring
- Safety factors will need to be addressed if this system is to be mounted on a tower
- Thorough research will need to be done to ensure that no local, state, or federal laws/codes are violated if pursuing to erect wind turbine system

REFERENCES

- 1) U. Government, 16 May 2012. [Online]. Available: http://www.windpoweringamerica.gov/wind_resource_maps .asp?stateab=in. [Accessed 16 July 2013].
- 2) "WindBlue Power," Brand Labs, 2013. [Online]. Available: www.windbluepower.com. [Accessed 6 December 2013].
- 3) D. Fink, "Small Wind Turbine Basis Part 2," *Energy Self Sufficiency Newsletter*, no. August, pp. 17-23, 2005.

29

REFERENCES

- 4) W. Nation, "How Much Power will a Wind Turbine Produce," 2010. [Online]. Available: www.windynation.com/articles/how-much-powerwill-wind-turbine-produce. [Accessed 6 December 2013]
- 5) W. Nation, "Windy Nation," 2010. [Online]. Available:

www.windynation.com/articles/wind/making-wind-power-how-choose-right-motor. [Accessed 6 December 2013].

QUESTIONS/COMMENTS

• Does anyone have any questions or comments

31

DEMONSTRATION

Unit demonstration