Senior Design Project II: Sorting Machine with Color Light to Digital Convertor

Andrew Costin, Tom Syster, Ryan Cramer Advisor: Professor Hack Instructor: Professor Lin May 5th, 2014

1

Presentation Outline

- Problem Statement
- Introduction
- Executive Summary
- Requirements
- Project Design Activities
- Project Design Overview
- Subsystems
- Design Diagrams
- Conclusions

Problem Statement

 This project was meant to demonstrate the ability to electronically detect and used the color of an object to control a system.

3

Introduction

- Phase 1
 - Formed Project Team
 - Planned Project Schedule
 - Planned Project Cost
 - Identified Project Risks
 - Preliminary Requirements
 - Project Approval

- Phase 2
 - Requirement Updates
 - Document Updates
 - Detailed Research / Design
 - Hardware Implementation
 - Software Implementation
 - System Testing

Executive Summary

- Project Schedule
 - Design / Testing : 80 days
 - Report / Presentation : 5 days
- Cost
 - Total Cost Budget : \$150
 - Total Time Budget : 450 Hours
- Deliverables
 - Functional Prototype, Project Report, and Presentation

Ļ

Operational Requirements

- System shall sort items by color.
 - Test
- System shall have 1 mode for sorting items.
 - Inspect
- System shall sort items into separate containers.
 - Test

Performance Requirements

- System shall sort ≥ 12 items per minute.
 - Test
- System shall have an error rate ≤ 50%.
 - Test
- System shall not sort > 5 colors.
 - Test
- System shall have a hopper that will hold ≤ 3 oz (one standard bag of skittles) of candy.
 - Inspect

Physical Requirements

- System shall be ≤ 10 lbs.
 - Inspect
- System shall be ≤ 2 foot tall.
 - Inspect
- System shall be ≤ 1 foot wide.
 - Inspect
- System shall be ≤ 1 foot deep.
 - Inspect
- System shall accept skittle sized objects
 - Test

Environmental Requirements

- System shall operate in a dry environment.
 - Inspect
- System shall operate at room temperatures
 Test
 - Test

9

Functional Requirements (Part 1)

- System shall use an Arduino microcontroller.
 - Inspect
- System shall use a color detecting sensor.
 - Inspect
- System shall use a bin/hopper.
 - Inspect
- System shall use Arduino servos.
 - Inspect
- System shall use copper tubing.
 - Inspect

Functional Requirements (Part 2)

- System shall use Plexi-Glass housing.
 - Inspect
- System shall use hardwired interfaces.
 - Inspect
- System shall compensate for color variablility. ("S" on Skittle).
 - Inspect
- System should be powered via USB to PC connection
 - Inspect
- System should output the number of sorted items to a display.
 - Test

11

Project Design Activities

- Review and/or Update Requirements and Architecture
- Research hardware/software.
- Component Selection
- Write microprocessor software.
- Integrate parts into a system.
- Troubleshoot system.
- Test system to ensure requirements are met.
- Prepare report.
- Prepare presentation.
- Deliver presentation, report, and prototype.

Design Overview

- Arduino Microcontroller Subsystem
 - "Brains" of the overall system
 - Receives data from color sensor
 - Controls mechanical subsystem
- Color Sensor Subsystem
 - Integrated color light to digital convertor
 - Adafruit Color Sensor
- Mechanical Subsystem
 - Collector Servo, Output Servo, Distribution System
 - Parallax Servos

13

Arduino Microcontroller Subsystem

- System Configuration: Connected to Laptop PC via USB connection
- C++ Program implemented in Arduino Sketchpad
 - Initializes variables
 - Initializes serial communication with color sensor
 - I²C serial Communication
 - Initializes collector rotation
 - Predefined variables for color comparison
- Controls output servo position
- Converts RGBC data to a color temperature

Setup Variables

- tcs
 - Specifies integration time and gain of the signal
- diskServo
 - Used to initialize the collector servo
- dispenserServo
 - Used to initialize the output servo
- pos1, pos2, pos3, pos4, pos5
 - Used to define the output positions

15

Color Sensing Variables

- r,g,b,c
 - Used to store the 16-bit values receive from the CLDC
- runningTotal
 - Used to store a running total
- colorTempAvg
 - Used to store a 3 sample color temperature average
- colorTemp
 - Used to store a single color temperature reading.

Counter Variables

- redCount
- yellowCount
- purpleCount
- greenCount
- orangeCount
- errorCount
- totalCount

17

Servo Functions

- .attach()
 - Connects a servo variable to a specific pin output
- .write()
 - Sends movement commands to a servo
- .writeMicroseconds()
 - Defines the pulse width sent to the servo
 - Determines the speed and direction that the servo rotates

CLDC Functions

- .begin()
 - Starts serial communication with CLDC
- .getRawData()
 - Takes color readings
 - Stores the color information in the r,g,b,c variables
- .calculateColorTemperature()
 - Converts r,g,b,c values to a single color temperature

19

Color Sensor Subsystem

- Functional Blocks within CLDC
 - Color Light to Digital Convertor (CLDC)
 - LED's to illuminate detection area
 - Analog to Digital Conversion
 - RGBC data transmitted to MCU

Color Sensor Subsystem and Interface to Arduino Microcontroller

21

Mechanical Subsystem

- Collector Servo (Continuous Rotation)
 - Rotating Disc

Mechanical System (Cont.)

- Output Servo (180 Degree)
 - Sweeping Arm (position arm)

23

System Diagram

Architecture Diagram

25

Block Diagram

27

Circuit Diagram

State Diagram

Control Software Algorithm

Header Files

Sensor.h

- Define Sensor addresses
- Sensor Function Prototypes 1.Get RGB Values
 - 2.Convert RGB Values to Color

Temperature

 Will access sensor.cpp file for function execution

Servo.h

- Servo Functions
 - 1.Read Servo Position
 - 2. Write Servo Position
 - 3.Delay Servo Movement

Main File

#Include Sensor.h #Include Servo.h

- Initialization
- Servo Setup
- Sensor Setup
- Get RGB Values
- Convert RGB to Color Temperature
- Decision Making based on color Temperature / Color Tolerance determined from testing
- Read servo position
- Write servo position based on color temperature and current servo position

29

Testing Approach

Test Program Algorithm

- Get the values for Red, Green, Blue and Clear variables.
- Convert the RGB values to a color temperature in Kelvin
- The color temperatures will then be displayed on the screen for recording purposes

	Test 1	Test 2	Test 3	Test 4	Test 5
Color 1	Result 1	Result 2	Result 3	Result 4	Result 5
Color 2	Result 1	Result 2	Result 3	Result 4	Result 5
Color 3	Result 1	Result 2	Result 3	Result 4	Result 5
Color 4	Result 1	Result 2	Result 3	Result 4	Result 5
Color 5	Result 1	Result 2	Result 3	Result 4	Result 5

Each result is the output color temperature in Kelvin.

"S" Facing CLDC Test

							Variance		
	Test 1	Test 2	Test 3	Test 4	Test 5	Average	Average %	Max	
Color 1 - Red	1642	1632	1683	1695	1658				
Variance	20	30	-21	-33	4	1662.0	1.30%	1.99%	
% Variance	1.20%	1.81%	1.26%	1.99%	0.24%				
Color 2 - Green	3663	3380	3346	3353	3262				
Variance	-262.2	20.8	54.8	47.8	138.8	3400.8	3.08%	7.71%	
% Variance	7.71%	0.61%	1.61%	1.41%	4.08%				
Color 3 - Yellow	2469	2511	2481	2493	2449				
Variance	11.6	-30.4	-0.4	-12.4	31.6	2480.6	0.70%	1.27%	
% Variance	0.47%	1.23%	0.02%	0.50%	1.27%				
Color 4 - Purple	2960	2982	3028	3083	2878				
Variance	26.2	4.2	-41.8	-96.8	108.2	2986.2	1.86%	3.62%	
% Variance	0.88%	0.14%	1.40%	3.24%	3.62%				
Color 5 - Orange	1624	1641	1632	1766	1644				
Variance	37.4	20.4	29.4	-104.6	17.4	1661.4	2.52%	6.30%	
% Variance	2.25%	1.23%	1.77%	6.30%	1.05%			33	

"S" Facing away from CLDC Test

						Variance		
_	Test 1	Test 2	Test 3	Test 4	Test 5	Average	Average %	Max
Color 1 - Red	1972	1817	1954	1845	1876			
Variance	-79.2	75.8	-61.2	47.8	16.8	1892.8	2.97%	4.18%
% Variance	4.18%	4.00%	3.23%	2.53%	0.89%			
•								
Color 2 - Green	3459	3299	3305	3407	3236			
Variance	-58.2	101.8	95.8	-6.2	164.8	3341.2	2.55%	4.93%
% Variance	1.74%	3.05%	2.87%	0.19%	4.93%			
Color 3 - Yellow	2384	2395	2537	2506	2471			
Variance	74.6	63.6	-78.4	-47.4	-12.4	2458.6	2.25%	3.19%
% Variance	3.03%	2.59%	3.19%	1.93%	0.50%			
Color 4 - Purple	2998	2856	2849	3118	2848			
Variance	-64.2	77.8	84.8	-184.2	85.8	2933.8	3.39%	6.28%
% Variance	2.19%	2.65%	2.89%	6.28%	2.92%			
Color 5 - Orange	1687	1628	1652	1621	1778			
Variance	-13.8	45.2	21.2	52.2	-104.8	1673.2	2.84%	6.26%
% Variance	0.82%	2.70%	1.27%	3.12%	6.26%			34

Prototype

Project Cost

- (1) Arduino Microprocessor Development Board - \$60
- (2) Arduino Servos -\$40
- (?) Misc Components Etc -\$20
- (?) Misc Items \$30

Work Breakdown Structure

	Andrew	Tom	Ryan	Total
Review and/or Update Requirements and Architecture	4			4
Research hardware/software.	4	4	4	12
Design color sensing circuit.		20	10	30
Design servo control circuit.			20	20
Design mechanical system.		20		20
Write microprocessor software.	10		10	20
Integrate parts into a system.	40	40	40	120
Troubleshoot system.	40	40	40	120
Test system to ensure requirements are met.	20	20	20	60
Prepare report.	15	2	2	19
Prepare presentation.	15	2	2	19
Deliver presentation, report, and prototype.	2	2	2	6
Total	150	150	150	450

Project Advisor: Professor Hack
Project Advisor Meeting Time: Tuesdays, 5:00pm – 6:00pm

37

Top Project Risks

Project Risks

- 1. Color sensing errors during color detection
- 2. Servo position errors

Conclusions

- Color Light to Digital Convertor
 - Highly Sensitive
 - Changed original requirement for error rate from <5% to < 50% because of the high sensitivity
- Collector Servo Rotation
 - Originally design to rotate in 90 degree steps, but needed change to continuously rotate.
 - The collector servo would not stop accurately in 90 degree steps. Each rotation was slightly off eventually causing the hole and CLDC to be misaligned.

39

Questions

