

Lakota Morris, Patrick Fox, and Danny Chen

Senior Design Project II ourse Instructor: Paul I. Lin, Professor of Electrical and Computer Engineering Technology May 2, 2014

Outline

- Introduction
- System Design Overview and Research
- Software Design
- Unit Testing and System Integration
- Project Management
- Conclusion

CHAPTER 1

Introduction

Problem Topic

- Android Application
- Wireless Mouse
- Project Goal:
 - Alternative to touchpad applications
 - $_{\circ}\;$ Eliminate the need to carry a mouse

Background

- Many "touchpad" applications
- Innovative implementation:
 - Mouse moves in response to physical movement of the smartphone
 - First of its kind

5

Methodology

- Analyze useful open-source applications
- Manipulate existing information
- Develop additional algorithms
- Integrate everything into final system
- Paired Programming

CHAPTER 2

System Design Overview and Research

Feasibility

- Not as easily controllable as a physical mouse
 - Accelerometer noise
- High power consumption
 - Use for brief periods or charge while using

Design Process

- Obtaining data
 - Fused Sensor
- Correcting data
 - Forward/backward drift
- Sending data to server

S

Legal Aspects

- Open-source code from RemoteDroid and BokiSoft
 - Both released under GNU General Public License v3

System Scope

- Data is sent and received via Wi-Fi
- Uses the phone's built-in sensors
- Algorithms manipulate sensor data into usable data

1

CHAPTER 3

Software Design

Programming Language and IDE

- Programmed in Java using Android API/Libs
- Integrated Development Environment
 - Android SDK
 - Eclipse IDE with ADT plugin

1

Main Components

- Server
- Application
 - Network connection
 - Fused Sensors
 - Calibration
 - Filtering
 - Data interpretation algorithm
 - Physics algorithm
 - 。 GUI

- Connection is made
- Left-click and Right-click
- Click-and-drag
- "Touch-to-move" function

- Changes
- Moving the mouse

CHAPTER 5

Project Management

Schedule and Time Management

- 11 October, 2013
- 28 October, 2013
- 25 November, 2013
- 27 November, 2013
- 16 December, 201
- 27 January, 2014
- 24 February, 2014
- 27 March, 2014 and
- 2 April, 2014
- 14 April, 2014 Evaluation
- 21 April, 2014
- 2 May, 2014

- Project Charter
- Project Requirements
- Project Plan Outline
- Project Schedule
- Final Project Plan
- Progress Report 1: Updated Project Schedule
- Progress Report 2: Iterative Design Phase
- Progress Report 3: Design Project Prototyping
- December Deposit 4: Testing and Evalu
 - -Progress Report 5: Updated Testing and
- -Final Report Draft
- -Final Report and Project Presentation

2

Resource and Cost Management

- All software was open source
- All hardware was already owned
- Only cost was time

Activity	Labor (Hours)
Design	15
Develop Code	30
Test/Debug	145
Write Report	30
Generate Presentation	30
Total Cost	250 hours

2

Risk Management

- Accelerometer performance varies between phones
 - Mitigated with calibration settings
- Bluetooth requires root
 - o Mitigated by moving to Wi-Fi
- Backups!

Project Procurement

- Free software
- Open source code
- Pre-own smartphone
- Pre-own computer

2

-7

CHAPTER 6

Conclusion

Conclusions

- Sensors are noisy
- Integrating noise = drift
- Drift is hard.
- Works well enough to show it can be done, not well enough for everyday use
- Better sensors in the future will make this much easier

