THERMOELECTRIC COOLER F.R.S.C.A. **Grayson Carpenter** Submitted to: Paul I. Lin, Professor of ECET 491 Senior Design II To Fulfill B.S. Electrical Engineering Technology Degree Requirements Advisor and Course Professor: Professor Paul I-Hai Lin Department of Electrical and Computer Engineering Technology College of Engineering, Technology, and Computer Science Indiana University-Purdue University Fort Wayne, Indiana #### Overview - Deliverables - Costs - Technical - WBS - Schedule - Risk - Charter ## Deliverables - Prototype - Fully functional and tested circuit prototype with enclosure. - PLC Program - The handling and display of data collected during the steel product cooling cycle. The program should be able to control the cooling cycle automatically. - Final report - Compilation of all project information - Presentation - Convey information about the project. #### Costs | Material/Tool Cost | | | | | | | | | | | | | |--|-----|------|-----------|----|----------|----------|--|--|--|--|--|--| | Item | Qty | Co | st Each | То | tal Cost | Comments | | | | | | | | Voltage Transducer | 1 | \$ | 117.00 | \$ | 117.00 | | | | | | | | | Current Transducer | 1 | \$ | 153.00 | \$ | 153.00 | | | | | | | | | Heat Sink | 1 | \$ | 9.99 | \$ | 9.99 | | | | | | | | | 12V 0.35 Fans | 2 | \$ | 15.00 | \$ | 30.00 | | | | | | | | | 40mm x 40mm Peltier Device | 2 | \$ | 11.00 | \$ | 22.00 | | | | | | | | | Hoffman Enclosure | 1 | \$ | 123.00 | \$ | 123.00 | | | | | | | | | Panel Back Pane | 1 | \$ | 12.00 | \$ | 12.00 | | | | | | | | | 3/4" Cord Grip | 1 | \$ | 8.00 | \$ | 8.00 | | | | | | | | | Siemens 3 Terminal Blocks | 10 | \$ | 3.99 | \$ | 39.90 | | | | | | | | | Siemens 3 Terminal Jumpers | 6 | \$ | 2.99 | \$ | 17.94 | | | | | | | | | Adhesice Wire Label Roll | 1 | \$ | 24.00 | \$ | 24.00 | | | | | | | | | Schnieder 7A Breaker | 1 | \$ | 111.00 | \$ | 111.00 | | | | | | | | | 12V Ice Cube Relay | 2 | \$ | 4.99 | \$ | 9.98 | | | | | | | | | Dell Power Supply | 1 | \$ | 25.00 | \$ | 25.00 | | | | | | | | | 12V/30A Power Supply | 1 | \$ | 21.00 | \$ | 21.00 | | | | | | | | | Misc (Wire, Ferruls, Bolts, Aluminum, ect) | 1 | \$ | 100.00 | \$ | 100.00 | | | | | | | | | Din Rail | 1 | \$ | 6.00 | \$ | 6.00 | | | | | | | | | Switch | 1 | \$ | 0.99 | \$ | 0.99 | | | | | | | | | | M | ater | ial Total | \$ | 830.80 | | | | | | | | ## Purpose - SDI SRD produces structural and rail steel products - LMF Process Costs Approximately \$1000/minute - Labor hours - Power Consumption - Material (Alloys) - Customer Quality Requirements - Material Chemistry and Temperature - Material Strength - Material Quality Standards Ladle Metallurgical Furnace (LMF) ## **Technical** Functional Block Diagram #### **Technical** System Requirements Verification Planning **Requirement Data** ID Requirement Type Requirement (Shall or Should statements) Verification Report Method The system shall reduce the temperature of the Steel Product Sample. 4-Dec-16 Final Report Operational Analysis The system shall dissapate the heat between 45 seconds and 1 minute, slew 4-Dec-16 Final Report Operational rate of 25 °F / 1 minute The system shall utilize Peltier Devices for the cooling application 4-Dec-16 Final Report Functional Inspection The system shall utilize fans to dissappate heat. 4-Dec-16 Final Report Functional Inspection The system shall have a power supply that supports 12 Volt to 24 Volt to power the smaller equipment for the cooling application. 5 Operational Inspection 4-Dec-16 Final Report Functional The system shall display thermal data from the sample. Demonstration 4-Dec-16 Final Report The system shall display Voltage and Current usage information during 4-Dec-16 Final Report Operational Demonstration The system shall utilize a Programmable Logic Controller (PLC) to control the Demonstration 4-Dec-16 Final Report Functional system functionally. The system shall scale the collected data in the PLC to display the data on a 4-Dec-16 Functional The system shall utilize a RTD (resistive temperature device) to read the temperature values with the ability send an output analog/digital signal to the 4-Dec-16 Final Report Functional The system shall have a PLC to calculate the heat dissapated. Demonstration 4-Dec-16 Final Report Functional The system shall display when the cooling cycle is running and complete. Demonstration The system will have analog signals communicate to the PLC through an 13 Functional Analysis 4-Dec-16 Final Report Analog Input card. The system terminals shall not be exposed during operation. The system shall fit in the requested 3 foot by 2 foot operating space in the lab 14 15 Physical Inspection 4-Dec-16 Final Report The system shall use input power of 110VAC to 130VAC at 57hz to 63Hz 16 Environmental Inspection 4-Dec-16 Final Report Operational The system shall have a PLC to calculate power consumption Final Report Analysis The system shall have the ability to operate manually without PLC cont #### 3.3 Calculations Power Supply Sizing Calculations: Peltier Device Specifications = 12V/7.66ACooling Fans Specifications = 12V/0.35ACalculations Max Heat Pump = 260 Watts Max Temperature = 154.4°F Power needed per Peltier Devices = P=IE= 12V * 7.66A = 91.92 Watts 2 Peltier Devices = 91.92W * 2 = 183.84W (used to size Power Supply) 4 Peltier Devices = 91.92W * 4 = 397.68W (used to size Power supply) Peltier Device Specifications = 12V/7.66A Cooling Fans Specifications = 12V/0.35APower needed per Cooling Fan 2 Cooling Fans = 4.2W * 2 = 8.4W P=IE = 12V * 0.35A = 4.2W Watts per Hour Calculation: Watts * hour Max Mode: $= 2.19 \frac{W}{hr}$ = 2.295 $\frac{W}{hr}$ Measured= (14.6A * 15V) * 0.01hr note: no load (15.3 * 15V) * 0.01hr Ideal = Efficient Mode: $=1.66 \frac{W}{hr}$ $=1.68 \frac{W}{hr}$ Measured= (13.6A * 12.2V) * 0.01hr note: no load (14A * 12V) * 0.01hr Ideal= Define the Temperatures: [2] Avg T_e = 70.5°F 28.66°F heat dissipation Avg T_e = 99.166°F Avg ΔT = 28.66°F T_o = Cold Side of the Peltier Device T_s = Heat Sink side of the Peltier Device ΔT = Difference between T_{R} and T_{T} Qmax = Thermal load = 28.66°F Qc = Thermal Load = Avg 28.66°F I_{max} = 7.6A per Peltier Device; 30.4A of system (4 Peltier Devices) Efficient Mode Input Power Max Mode Input Power = 15.4v * #### $\label{eq:max_mode_coefficient} \begin{aligned} \text{Max Mode Coefficient of Performance (COP)} &= \frac{\text{Thermal Load(Qe)}}{\text{Input Power}} = \frac{28.66 \text{ F}}{235.93 \text{ W}} = 0.121 \text{ Watts} \\ \text{Efficient Mode Coefficient of Performance (COP)} &= \frac{\text{Thermal Load(Qe)}}{\text{Input Power}} = \frac{0}{142.81 \text{W}} = 0.202 \text{ Watts} \end{aligned}$ Calculating Peltier Efficiency = Calculations Cont'd o Input Power = Watts to joules = 1 Watt = 1 | Joule | second o Input energy @ time (in seconds) = $\frac{\text{Joules}}{\text{second}}$ o Average Temp calculated above BTUs used for cooling = (weight) * (Average Temperature change) * (1 BTU | IbE) Energy used for cooling = (BTU's used for cooling) * 1055 joules o Efficiency = \frac{(Energy used for cooling)}{(Input energy)} @ Efficient Power mode (1/2 Power) ■ Input Power = 183.84 Watts = 183.84 joules/second Average Temperature Change = 28.66°F BTUs used for cooling = 0.75lb * 28.66°F *1BTU/lbF = 21.495 BTU ■ Energy used for cooling = 21.495 BTU * 105.5 structure = 2263.92 joules ■ Efficiency = \frac{2,263.92 joules}{10,980 joules} = 0.206\% @ Full Power Mode ■ Input Power = 397.68 Watts = 397.68 joules/second ■ Input Energy @1 minute = 397.68 39 Average Temperature Change = 28.66°F BTUs used for cooling = 0.75lb * 28.66°F *1BTU/lbF = 21.495 BTU Energy used for cooling = 21.495 BTU * 105.5 structure = 2263.92 joules • Efficiency = $\frac{2.263.92\ joules}{23860.8\ joules}$ = 0.094% **Peltier devices are approximately 5% efficient** ``` The protocol of this program is to sport a protocol and control to the ``` | | LEVEL | WBS ID | WBS Description | Status | Labor Hours | |-----|-------|---------------|-------------------------------------|--------|--------------------| | | 1 | 0000 | Thermoelectric Cooler | | 145 | | MDC | 2 | 1000 | Prototype | | 100 | | WBS | 3 | 1100 | Circuit Design/Research | | 10 | | | 4 | 1110 | Circuit theory of operation | | | | | 4 | 1120 | Complete circuit design schematic | | | | | 3 | 1200 | Circuit Construction | | 20 | | | 4 | 1210 | Circuit design schematic | | | | | 4 | 1220 | Circuit Prototype | | | | | 4 | 1230 | Troubleshooting | | | | | 4 | 1240 | Functional Testing | | | | | 3 | 1300 | Encolsure Design/Construction | | 20 | | | 4 | 1310 | Complete enclosure design schematic | | | | | 4 | 1320 | Fabricate enclosure prototype | | | | | 4 | 1330 | Enclosure drop testing | | | | | 3 | 1400 | PLC Programming | | 20 | | | 4 | 1410 | Rate Cooling Control | | | | | 4 | 1420 | Data handling | | | | | 4 | 1430 | Data Display | | | | | 3 | 1500 | Integration | | 15 | | | 4 | 1510 | Initial Assy | | | | | 4 | 1520 | Hardware/PLC Software integration | | | | | 4 | 1530 | Troubleshoot | | | | | 4 | 1540 | Functional Test | | | | | 3 | 1600 | Test Requirements | | 15 | | | 4 | 1610 | Cools the Steel Product Sample | | | | | 4 | 1620 | Displays Thermal Data | | | | | 4 | 1630 | Displays System Power Data | | | | WBS | 2 | 2000 | Project Report | 30 | |-----|---|------|-------------------------------|----| | | 3 | 2100 | Outline | 10 | | | 4 | 2110 | Top level project summary | | | | 3 | 2200 | Draft | 10 | | | 4 | 2210 | Meet Report requirements | | | | 3 | 2300 | Edit Draft | 5 | | | 4 | 2310 | Grammer/Formatting Check | | | | 4 | 2320 | Change discrepancies | | | | 3 | 2400 | Final | 5 | | | | | | | | | 2 | 3000 | Presentation | 15 | | | 3 | 3100 | Outline | 3 | | | 3 | 3200 | <u>Draft</u> | 3 | | | 4 | 3210 | Meet Presentation Requirments | | | | 3 | 3300 | Edit Draft | 3 | | | 4 | 3310 | Grammer/Formatting Check | | | | 4 | 3320 | Change discrepancies | | | | 3 | 3400 | Rehearse | 3 | | | 4 | 3410 | Meet timing requirements | | | | 3 | 3500 | <u>Final</u> | 3 | | F | Ri≤ | sk | Re | Ø | ister | | | | | | | | | | |---------------|-----|---------------|-----------|---|--|------|--|--------|---------------------|-------------------|-------|--------|----------|--| | Risk Register | ID | Entry
Date | Туре | | Risk Description:
"IF statement" | | Consequence of Risk:
'THEN statement' | Status | Likelihood
(1-5) | Severity
(1-5) | Score | Rank* | Response | Description of Response | | | 1 | 27-100-10 | Technical | P | Program sell not
communicate sells the
SESI noticels | THEN | Tening data cannot be
transferred licers the best
station. | Open | 4 | 4 | 16 | Medium | Migele | Vest) that the communication
in estap betwee system
implementation. | | | 2 | 27-186-19 | Technical | P | Lagis. 4505 esitsene le
unecellide | THEN | he PLC program paties
of the lets council be
completed. | Ореп | 2 | 4 | 19 | Medium | lillgele | Try to get a different
programming pictions,
Stemans of 1200 PLC and
Cooks actions. | | | | 27-Um-10 | Gchedule | | Time to internanged | THEN | project, will not be
completed by the end of
the economics | Open | 2 | 4 | 16 | Medium | Liligate | Irulado Irulier Irrees in the
echedule to eccound for
missed deadless. | | | 4 | T-lim 46 | Schools | P | PLC programming below
langur from expected | THEN | Project processes will be deleped and becoming behind acted.to. | Ореп | 1 | 4 | 4 | Low | Ausld | they or top of project
echeduling and make sure
leases are resolved in a thesip
resoner during programming. | | | 8 | 27-liar-16 | Schools | P | parte de rest arrive en
Name | THEN | escensity and teoling of
the publishes will be
drieped. | que | 1 | 4 | 4 | Low | Migris | Lock et different organism and
plan in house parts entered
early emough an deleya con
he beneded. | | | | 27-lin/16 | Technical | P | trong petter descent
are chasses that cont
herale the desired
hamperelare range | THEN | for easing equipment and not work. | Open | 2 | 4 | 10 | Medium | lillgele | chasse paller dedoes that
are hardle the desired
maintain quanting
temperature. | | | 7 | 27-Mar-16 | Caset | P | Central parts in leading | THEN | helia landern peets and a
northectional system | Open | 2 | a | 10 | Medium | Liligate | cider near parts and change
eyelem design. | | | • | 21-Apr-16 | Cost | P | SiCi decides to est. Ausd
the project | THEN | the project total be beatled
until funds ere
resolviblehed | Ореп | 2 | 1 | 1 | Low | Audd | the project will need to be
funded by rayest? | ## **Lessons Learned** - 1: Test Rack - 2: Heat Sink issue - 3: Power Supply Calibration - 4: Wire Clean up - 5: HMI - 6: Contactor Jumper issue | Demo | | | | |------|--|--|--| | | | | | | | | | | | | | | |