Cloud-Enabled Raspberry Pi Security System

ARCHIE BRADY
ADVISORS: PROFESSOR LIN & PROFESSOR STEFFEN
CPET 491
12/09/2016

Outline

2

- ► Home Security
- ► Executive Summary
- Overview
- ▶ Circuit Design
- ► Software Design
- ▶ Notification Alerts
- ▶ Project Architecture
- ▶ Components

- ► Raspberry Pi Pinout
- ▶ Circuit Design
- Circuit Testing (Breadboard)
- ► Circuit Testing (Perf-board)
- ▶ PrivateEyePi Website
- ► Software Flow Chart
- ► Software Design

Outline Notification Alerts Problems and Corrections Cost Management Schedule and Time Management Risk Register Risk Matrix System Requirements

Home Security According to www.safewise.com, in 2014, only 13.6% of home invasions resulted in arrests Over 86% go unsolved Can be prevented, solved with Home Security System

Executive Summary Inexpensive Home Security System Detect if there is an intruder Detect temperature Detect if there is a fire Automatically arm/disarm when the user is detected on the network

Overview System based on PrivateEyePi software Supplies the code, website, and server to control the system Built with Raspberry Pi 3 with Linux Distribution 'Ubuntu-Mate'


```
from time import sleep
Flame Sensor
                                          import RPi.GPIO as GPIO
                                           #GPIO.setmode(GPIO.BOARD)
                                           GPIO.setmode(GPIO.BOARD)
                                          GPIO.setwarnings(False)
                                           Flamein = 15
                                           #Switch Pin
                                          GPIO.setup(Flamein, GPIO.IN)
                                          while True:
                                                  if (GPIO.input(15) == True):
    print 'the house, the house, the house is on fire.'
                                                   else:
                                                      print 'you are safe.'
                                               except KeyboardInterrupt:
                                                   exit()
                                          GPIO.cleanup()
```

Network Scanner 2

```
# Enter device MAC addresses (lowercase) to watch
phones = {'1c:5c:f2:98:30:c4': 'Archie-Phone',
'e0:c7:67:62:20:07': 'Rebecca-Phone'}
def GetCurrentDevices():
    present_files = []
    allDevices = []
    device = {}
# Execute arp command to find all currently known devices
    proc = subprocess.Popen('arp -a | cut -d" " -f1,4', shell=True, stdout=subprocess.PIPE)
# Build array of dictionary entries for all devices found
    for line in proc.stdout:
        item = line.split()
        device["Name"] = item[0]
        device["MAC"] = item[1]
         allDevices.append(device.copy())
    proc.wait()
    return allDevices
```

NetworkScanner2 def WhiteListedDevicePresent(allDevices): # Search Array of Dictionaries for items in phones # Print name of device if found for person in phones.iterkeys(): for device in allDevices: if (device.get('MAC') == person): return True; return False

						Risk	Re	gis	ter	•			31
ID	Entry Date	Туре		Risk Description: 'IF statement'		Consequence of Risk: 'THEN statement'	Status	Likelihood (1-5)	Severity (1-5)	Score	Rank*	Response	Description of Response
1	27-Mar-16	Cost	IF	Chosen Raspberry Pi board does not interface with project well	THEN	Will have to order another board, thereby exceeding the project budget	Open	1	4	4	Low	Accept	
2	27-Mar-16	Cost	IF	Power surge destroys the raspberry pi	THEN	Will have to order another, therefore exceeding the project budget	Open	2	4	8	Medium	Avoid	Use a surge protector
3	27-Mar-16	Schedule	IF	Python code not written correctly for IP scanning	THEN	Will get pushed back to further than planned	Open	3	4	12	Medium	Mitigate	Will have to look for more resources to help with program
4	27-Mar-16	Schedule	IF	Parts lost in the mail	THEN	Delay of project completion	Open	2	5	10	Medium	Avoid	Make sure parts are ordered and on the way
5	27-Mar-16	Technical	IF	Coding not sufficient enough to "talk" to raspberry pi through web interface	THEN	The system will not be controlled through the web interface	Open	3	4	12	Medium	Transfer	Find an appropriate resource to help with coding
6	27-Mar-16	Technical	IF	The program cannot detect IP address	THEN	The system cannot be armed/disarmed automatically	Open	3	3	9	Medium	Avoid	Find a way to recognize IP addresses

	Sy	stem Requirements	
ID 🔻	Requirement Type -	Requirement (Shall or Should statements)	Verification Method
1	Operational	The system shall generate an alert when the alarm is triggered	Demonstration
2	Operational	The system shall detect intrusion	Test
3	Functional	The system shall be armed by use of a wireless signal	Demonstration
	Operational	The system shall be able to be armed from a remote location	Demonstration
	Operational	The system shall be able to be disarmed from a remote location	Demonstration
4	Operational	The system shall be disarmed by use of a wireless signal.	Demonstration
5	Functional	The system shall use a self oscillating piezo transducer for the audible alarm	Inspection
6	Operational	The system shall sense intrusion using door switches.	Demonstration
7	Functional	The wireless interface shall be in a smartphone.	Demonstration
8	Performance	The alarm shall arm itself when the user is in range of the wifi network	Demonstration
9	Performance	The alarm shall disarm itself when the user is out of range of the wifi network	Inspection
10	Functional	The system shall display the temperature in Farenheight	Analysis
11	Physical	The system shall weigh no more than 5 lbs.	Inspection
12	Physical	The system shall be hidden inside a box no larger than 12x12x6	Inspection
13	Operational	The system shall be able to detect intrusion when door is opened	Test
14	Operational	The system shall be able to detect intrusion when windows are opened	Test
15	Environmental	The system will be able to work in an apartment setting	Test
16	Operational	The system shall be able to detect temperature	Demonstration
17	Operational	The system shall be able to detect if there is a fire.	Demonstration
18	Operational	The system shall disarm when the user is in range of the system	Demonstration
19	Operational	The system shall arm when the user is not in range of the system	Demonstration
20	Environmental	The UI will be hosted on a computer	Demonstration
21	Environmental	The UI will be hosted on a smartphone	Demonstration

Lessons Learned Should have given myself more time to learn programming and to program the project Need to add a 1k resistor to the transistor. Will not last as long without a resistor at the base of the transistor.

Conclusion Project was mostly successful Automatically arming/disarming did not work Flame Sensor, Temperature Sensor, and Reed Switch worked

