NFC Windows Login System Kyle Badskey

Instructor: Paul Lin

Advisors: Hongli Luo

Harold Broberg

Date: April 29, 2016

Presentation Outline

Summary Commands

Reproblem Statement How to Use

Requirements Revaluation

Reproject Code Conclusion

Executive Summary

My project's goal was to allow a user to have an NFC chip with a unique code attached to it. This unique code would be linked with a set of keyboard commands that would sign in the user automatically thus making logging into a computer system a lot faster and easier without having to memorize any passwords

2

Executive Summary Cont.

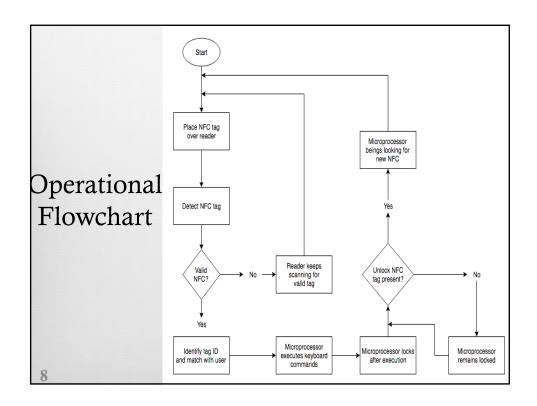
○ Four major operating requirements

⇔ Have a pre registered Near Field Communication (NFC) tag that is assigned to a given user ⇔ Detect the NFC tag by using an NFC tag reader ⇔ Authenticate the tag using an Arduino Leonardo with pre programmed user tags registered ⇔ Access the password prompt, enter the user's password, and hit 'Enter' to grant the user access to their account.

Problem Statement

- ™ In 2012, a company called Janrain conducted a study about how many passwords the average American adult had to remember to login to online profiles.
- The study found that 58% of American adults they asked had to remember 5 or more passwords.

The Solution


- Cut down on what we have to remember with material objects.
- A card with a unique code that you don't have to remember is a lot easier to work with than a password that could have to change every other month.
- NFCs are becoming a more common thing being used in the world around us.
- Real Example: Mobile Payments

6

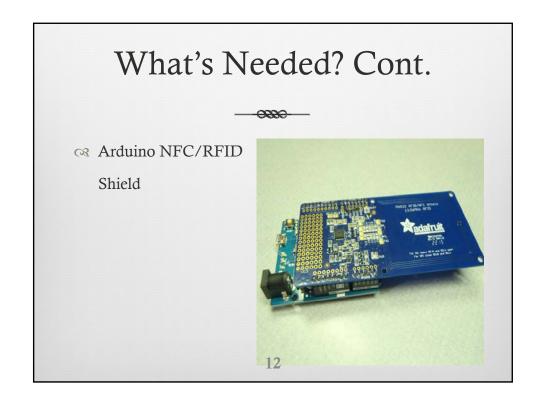
Goals of the Project

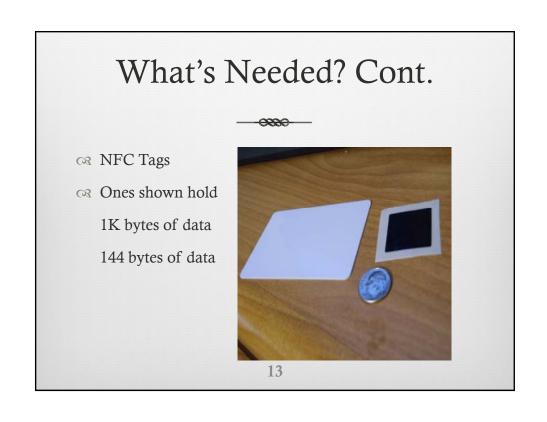
Requirement Type	Requirement (Shall or Should statements)	Verification Method \$	Date Verifie	Verification Report
Operational	System shall login users without use of a keyboard interface	Demonstration		
Operational	System shall keep out unwanted users from accessing unauthoized computers	Test		
Functional	System shall identify users with unique tags	Demonstration		
Performance	System shall log users in within 10 seconds of detection	Test		
Performance	System shall detect wireless keys within 3 inches of receiver	Test		
Physical	System shall be portable for the user	Inspection		
Physical	System shall use a Micro USB connector	Inspection		
Performance	System shall store at least 20 users	Demonstration		
Enviornmental	System shall have a master database with a master key	Inspection		

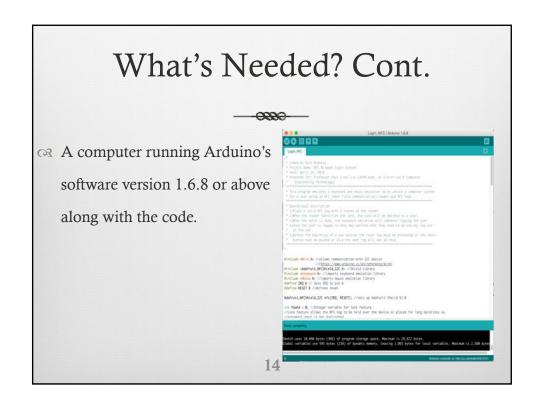
Key Goal 1

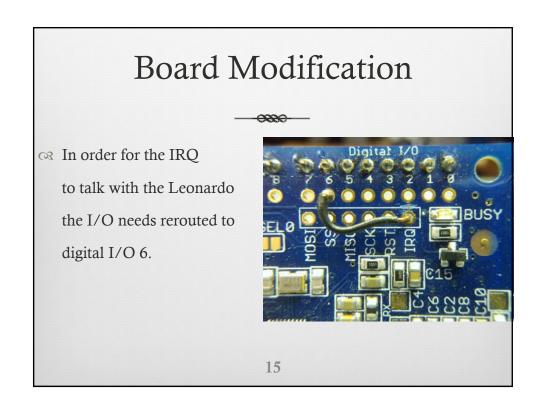
- System shall login users without the use of a keyboard interface.
 - Main objective of the system
 - Reliminate the need for having to memorize password

Key Goal 2


- System shall log users in within 10 seconds of detection
 - Must be fast to save time and be efficient
 - A user will find system annoying if slow


10


What's Needed?


- Arduino Leonardo
- The Leonardo model is best mostly for this for its keyboard and mouse emulation.

How to Use

- 1. A user places a valid NFC tag within four inches of the NFC Shield that is connected to the Arduino Leonardo
- $^{\circ}$ 2. The shield sends the tag ID to the Leonardo and if it matches an ID, the password code is sent to the attached computer.
- 3. The computer takes the code coming from the Leonardo through the USB and reads it as ASCII character inputs and executes those key commands.
- 4. The user will then be logged into the system within 10 seconds (pending speed of the computer or connected network)
- Solution 5. The NFC shield will then lock so no further input is brought in by the tag.

Functional Block Diagram Power Source Data Monitor and Control - Validates NFC tag - Prevents unauthorized tags Receives digital keyboard signal - Inputs give key sequence Lock - After signal is input, the microcombole looks - Prevents further unwanted input from board 18

Project Code (Libraries)

- #include <Wire.h> //allows communication with I2C device
- //(https://www.arduino.cc/en/reference/wire)
- #include <Adafruit_NFCShield_I2C.h> //Shield Library
- #include <Keyboard.h> //imports keyboard emulation library
- #include <Mouse.h> //imports mouse emulation library

Project Code (Setup)

void setup() {
 // set up Serial 9600 bps
 Serial.begin(9600);
 // find Adafruit RFID/NFC shield
 nfc.begin();
 // configure board to read NFC tags
 nfc.SAMConfig();
 Keyboard.begin(); //initiate the Keyboard

20

Project Code (Variables)

- unsigned digit = 0; //set value of digit to zero temporarily
- int found = 0; //Integer variable for lock feature
- int user = 0; //Integer variable identifying which ID was last used.
- □ uint8_t identify; //Will hold ID of the NFC tag
- \mathbb{R} uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store the returned UID
- uint8_t uidLength; // Length of the UID (4 or 7 bytes depending on ISO14443A card type)
- identify = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443A, uid, &uidLength);

Project Code (Main Loop)

- void loop() { //Main loop function
- uint8_t identify; //Will hold ID of the NFC tag
- uint8_t uid[] = { 0, 0, 0, 0, 0, 0, 0 }; // Buffer to store
 the returned UID
- uint8_t uidLength; // Length of the UID
- Serial.println("Waiting for valid NFC tag!"); //Prints on prompt "Waiting for valid NFC tag!"

22

Project Code (Main Loop Cont.)

- identify = nfc.readPassiveTargetID(PN532_MIFARE_ISO14443 A, uid, &uidLength);
- uint32_t cardID = 0; //Will be used to print out the card number that will be used as ID

Project Code (Main Loop Cont.)

- if (identify) { //activates when identity has information, aka an NFC tag is present
- Serial.print("NFC tag #");
- //converts the UID into a variable number
- α cardID = uid[3];
- cardID <<= 8; cardID |= uid[2];
- $cardID \le 8$; cardID = uid[1];
- \bowtie cardID <<= 8; cardID |= uid[0];
- Serial.println(cardID); //Prints the new cardID variable
- Serial.print(" detected"); //Prints the word "detected" at the end to complete the prompt

24

Keyboard Commands

- //This code can be duplicated and manipulated for about 140 users, pending on password lengths
- α //if (found == 0){ Constant
- //if (cardID == 34445572) { change the value of cardID to card value given by Arduino Serial Monitor
- // if (user == #) Will use to determine where to put selection
- // Mouse.click(MOUSE_LEFT); Use this for Windows
- // Keyboard.press(KEY_LEFT_CTRL); Use this for Windows 7
- // Keyboard.press(KEY_LEFT_ALT);
- // Keyboard.press(KEY_DELETE);

Keyboard Commands Cont.

```
// delay(1500); Constant
      // Keyboard.write('p'); Change the letters in the apostrophes
   to your password
          Keyboard.write('a');
03
          Keyboard.write('s');
63
          Keyboard.write('s');
          Keyboard.write('w');
03
          Keyboard.write('o');
          Keyboard.write('r');
03
          Keyboard.write('d');
03
          Keyboard.write(KEY_RETURN); Have this at the end
   after all characters have been entered
      // found = 1; Constant
03
                                                                             26
      // user = #; # = User ID
03
```

Evaluation

From what I wanted to achieve in the beginning on my original requirements table, my key design requirements have been tested and verified.

Requirement Results


Requirement (Shall or Should statements)	•	Verification Method \$	Date Verifie	Verification Repor
System shall login users without use of a keyboard interface	Ť	Demonstration	20-Apr-16	Passed
System shall keep out unwanted users from accessing unauthoized computers		Test	20-Apr-16	Passed
System shall identify users with unique tags		Demonstration	10-Apr-16	Passed
System shall log users in within 10 seconds of detection		Test	20-Apr-16	Passed
System shall detect wireless keys within 3 inches of receiver		Test	10-Apr-16	Passed
System shall be portable for the user		Inspection	15-Jan-16	Passed
System shall use a Micro USB connector		Inspection	15-Jan-16	Passed
System shall store at least 20 users		Demonstration	20-Apr-16	Passed
System shall have a master database with a master key		Inspection	20-Apr-16	Passed

28

Conclusion

- This project was a success and I was able to create a way for users to be able to login to a computer system without having to use a keyboard at all or have to memorize a password.
- From this project I learned how to take an idea, develop the idea, and execute the idea to make the idea an actual product.

