ECET/CPET 491 Senior Design Project II

Project Management Guideline Spring 2017

Paul Lin, Professor or Electrical and Computer Engineering Technology

Recommended Sections and Info for the Project Activities.

1. Introduction

2. System Specifications

- System Description
- System Operating Environment
- System Structure: physical decomposition and information flow (module chart, component charts)
- System Behavior: temporal and control relations (state chart, sequence diagram)
- System Functionality: functional decomposition and information flow (activity charts)

3. System Design

- Requirements Specification
- Implementation Definition
- 3.1 System Requirements
 - Functional Requirements
 - System response time
 - Quality requirements
 - Performance requirements
 - Efficiency requirements
 - Non-Functional Requirement
 - System running environment, platform
 - Reliability requirements
 - Safety requirement
 - Hardware/software distribution
 - o Software/hardware interfaces
- 3.2 Constraints
 - Memory size
 - Real-time constraints: 0.1% time precision
 - Hardware constraints: motor inertial time 50 ms
 - Speed precision: 10 rpm
 - Response time
 - Technological constraints

3.3 Verification of System Requirements

- 3.4 System Requirement Analysis
- 3.4.1 Scenarios
- 3.4.2 Sequence Diagrams
- 3.4.3 Capturing Time and Timelines
- 3.4.4 State Transition Charts and Use Cases

4. Hardware System Design

- 4.1 Requirements
 - Operating environments, temperature, frequency, voltage, current, noise, system clock, power consumption, etc
- 4.2 Hardware Architecture Design
- 4.3 Electrical/Electronics Analog Circuit and Interface
 - Modeling mathematical model, behavior modeling
 - Simulation
 - Prototype Testing
 - Hardware Description
- 4.4 Digital Circuit and Interface
 - Modeling mathematical model, behavior modeling
 - Simulation
 - Prototype Testing
 - Hardware Description
 - Timing Requirements
- 4.5 Microcontroller/Microprocessor
 - Block Diagrams
 - Timing Sequence of Interrupt Handling
- 4.6 Other System Hardware

4.7 Verification of Hardware Design and Requirement for Implementation

5. Software System Design

- 5.1 Requirements
- 5.2 Software Architecture Design
 - Data Flow Diagrams
 - Flow Charts
 - State Transition Diagrams
 - Tasks
- 5.3 Development Tools and Program Languages
- 5.4 Data Structure Design
 - Parameters
 - Variables/Data structures/Descriptions
 - Specifications
 - A Sensor Example
 - Attributes (data): Linear value, rate of change
 - Behavior (operation method): Acquire, report, reset, zero, enable, disable
 - State (memory): Last value, last rate-of-change
 - Identity: an instance of some temp reading

- Responsibility: provide x info for
- An Airline Flight
 - Attribute: Flight number, departure time, arrival time, flight plan
 - Behavior: Depart, arrive, adjust course
 - State: current location (x, y, z, t)
 - Identity: NW100 to Ft Wayne
 - Responsibility: Transfer luggage and passengers to destination; file flight plan, adhere to flight plan
- 5.5 Events, Conditions, Observations Modeling
 - Timing analysis
 - Activation
 - Messaging: an interrupt, a function call, etc

Examples:

- The States of A/D Converter: Enabled, Sampling, Holding, Disabled
- Actuators
- On
- Off
- 5.6 Function Design
 - Inputs/outputs
 - Variable sharing model/relation
 - Function behaviors/descriptions/specification
 - Function/module synchronization
 - Function modeling

5.7 HMI & Command Design

- User Interface
- Regulator activation
- Start
- Stop
- Acceleration
- Return
- Add ?
- Remove?
- Read

5.8 Other System Software/Firmware

5.9 Verification of Software Design and Requirements for Implementation

6. System Integration and Testing

- 6.1 Hardware Integration
- 6.1.1 Prototyping
- 6.1.2 Filter Sub-circuit
- 6.1.3 Signal Conditioning Sub-circuit
- 6.1.4

6.2 Software Integration

6.2.1 Software Modules

6.2.2 Software Coding

- 6.2.3 Software Debugging
- 6.2.4 Testing Cases and Validation
- 6.2.5 Software Integration Testing Reports

6.3 Software/Hardware Integration and Testing

- 6.3.1 System Performance Analysis
 - Propagation delay
 - System timing
 - Memory requirements
 - Interrupt latency
 - Loading
 - Current, voltage, power, harmonics

6.3.2 System Tuning and Optimization

REFERENCES

(Last page of the report; in IEEE Format with examples for reference to data sheet, user manual, technical specification, technical documentation, books, conference papers, and papers)

- [1] M. Duguid, "Automated Piezometer System," B.S. EET Senior Design Report, Indiana University-Purdue University Fort Wayne, Apr. 2007.
- [2] Philips P8 x 592 8-bit Microcontroller with on-Chip CAN: Datasheet, Philips Semiconductor, 1996.
- [3] MCP2515 Stand-Alone CAN Controller with SPI Interface: Datasheet, Microchip, 2005.
- [4] Crossbow, MICAz-Wireless Measurement System Product Data Sheet, 2005.
 [Online]. Available: http://www.xbow.com/Products/Product_pdf_files/Wirelss_pdf/MICAz_Datasheet.pd f. [Accessed: Oct. 2007]
- [5] C515C 8-bit CMOS Microcontroller, User's Manual, Siemens, 1997.
- [6] R. Bosch, *CAN Specification 2.0.* Postfach, Stuttgart, Germany: Robert Bosch GmbH, 1991. [Online]. Available: http://www.semiconductors.bosch.de/pdf/can2spec.pdf.
- [7] M. Spong and M. Vidyasagar, Robot Dynamics and Control, New York: Wiley, 1989.
- [8] A. Hemani and M. Mehrabi, "On the steering control of automated vehicles," in *Proc. IEEE Conf. Intelligent Transportation System*, 1977, pp. 266-271.
- [9] Y.S. Kim, B.S. Soh, and S.G. Lee, "A new wearable input device: SCURRY," *IEEE Trans. Ind. Electron.*, vol. 52, no. 6, pp. 1490-1499, Dec. 2005.
- [10] J. Morena, M.E. Ortuzar, and J.W. Dixon, "Energy-management system for a hybrid electric vehicle, using ultracapacitor and neural networks," *IEEE Trans. Ind. Electron.*, vol. 53, no. 2, pp. 614-623, Apr. 2006.
- [11] W. Hu, X. Xiao, D. Xie, T. Tan, and S. Maybank, "Traffic accident prediction using 3-D model-based vehicle tracking," *IEEE Trans. Veh. Technol.*, vol. 53. no. 3, pp. 677-694, May 2004.
- [12] W. van der Mark and D. Gavrila, "Real-time dense stereo for intelligent vehicle," IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 63-77.

- [13] M. Hunt et al., "Speed control design for an experimental vehicle using a generalized gain scheduling approach," *IEEE Trans. Control Syst. Technol.*, vol. 8, no. 3, pp. 381-395, May 2000.
- [14] M. F. Rasid and B. Woodward, "Bluetooth telemedicine processor for multichannel biomedical signal transmission via mobile cellular networks," *IEEE IEEE Info. Technol. in Biomed.*, vol. 9, no. 1, pp. 35-43, Mar. 2005.
- [15] Z. Doulgeri, and T. Matiakis, "A web telerobotic system to teach industrial robot path planning and control," IEEE Trans. Educ. vol. 49, no. 2, May 2006.
- [16] K. K. Tan and H. L. Goh, "Complete mobile e-mail management," in Proc. Int. Symp. Santa Caterina on Challenges in the Internet Interdisplinary Research, 2004, pp. 29-1-29-6.

APPENDICES

Appendix A: Bosch CAN

Appendix B: Parts List for Prototype

Appendix C: Software Programs and Routines

Appendix D: Technical Support & Communications