ECET/CPET 491 Senior Design Project II

Jan. 9, 2017

Paul Lin, Professor or Electrical and Computer Engineering Technology

Recommended Sections and Information for the Final Report.

A Transmittal Letter

Address to Professor Paul Lin

Content:

- Report title
- Scope of the report
- Short statement concerning the status of the project
- How to follow up with any questions

Student signature

Enclosure: Final Report

Cover Page:

Project Title (largest font)
Final Project Report
Date
Student Name
Advisor Professor Names

Submitted to: Paul I. Lin, Professor of ECET 491 Senior Design II

Department of Computer, Electrical and Information Technology College of Engineering, Technology, and Computer Science Purdue University Fort Wayne Campus, Indiana

ABSTRACT

- No more than one page
- List important keywords at the end of the page

TABLE OF CONTENT

LIST OF ILLUSTRATIONS

LIST OF TABLES

EXECUTIVE SUMMARY (purpose of the project, project time period, development process, short description of the final deliverables, acknowledgement; and a list of keywords)

CHAPTER 1. INTRODUCTION

Problem Topic

Background

Criteria

Methodology

Primary Purpose

Overview

CHAPTER 2. SYSTEM DESIGN OVERVIEW AND RESEARCH

Feasibility

Design Process

Legal Aspects

System Scope

CHAPTER 3. HARDWARE (Circuit) DESIGN (if applicable)

Circuit Design

Simulation Results

Circuit Prototypes and Testing

PCB Layout

CHAPTER 4. SOFTWARE DESIGN (if applicable)

Software Architecture

Programming Language

Integrated Development Environment

Main Components

UML Diagrams: State Diagrams, Activity Diagrams, etc

CHAPTER 5. UNIT TESTING AND SYSTEM INTEGRATION

Software Testing and Validation

Hardware Testing and Validation

System Integration, Testing, and Validation

CHAPTER 6. PROJECT MANAGEMENT

Schedule and Time Management

Resource and Cost Management

Quality Management

Risk Management

Project Procurement

Lessons Learned

CHAPTER 7. CONCLUSION

REFERENCES

(Last page of the report; in IEEE Format with examples for reference to data sheet, user manual, technical specification, technical documentation, books, conference papers, and papers)

- [1] M. Duguid, "Automated Piezometer System," B.S. EET Senior Design Report, Indiana University-Purdue University Fort Wayne, Apr. 2007.
- [2] Philips P8 x 592 8-bit Microcontroller with on-Chip CAN: Datasheet, Philips Semiconductor, 1996.
- [3] MCP2515 Stand-Alone CAN Controller with SPI Interface: Datasheet, Microchip, 2005.
- [4] Crossbow, MICAz-Wireless Measurement System Product Data Sheet, 2005. [Online]. Available: http://www.xbow.com/Products/Product_pdf_files/Wirelss_pdf/MICAz_Datasheet.pd f. [Accessed: Oct. 2007]
- [5] C515C 8-bit CMOS Microcontroller, User's Manual, Siemens, 1997.
- [6] R. Bosch, *CAN Specification 2.0*. Postfach, Stuttgart, Germany: Robert Bosch GmbH, 1991. [Online]. Available: http://www.semiconductors.bosch.de/pdf/can2spec.pdf.
- [7] M. Spong and M. Vidyasagar, *Robot Dynamics and Control*, New York: Wiley, 1989.
- [8] A. Hemani and M. Mehrabi, "On the steering control of automated vehicles," in *Proc. IEEE Conf. Intelligent Transportation System*, 1977, pp. 266-271.
- [9] Y.S. Kim, B.S. Soh, and S.G. Lee, "A new wearable input device: SCURRY," *IEEE Trans. Ind. Electron.*, vol. 52, no. 6, pp. 1490-1499, Dec. 2005.
- [10] J. Morena, M.E. Ortuzar, and J.W. Dixon, "Energy-management system for a hybrid electric vehicle, using ultracapacitor and neural networks, "*IEEE Trans. Ind. Electron.*, vol. 53, no. 2, pp. 614-623, Apr. 2006.
- [11] W. Hu, X. Xiao, D. Xie, T. Tan, and S. Maybank, "Traffic accident prediction using 3-D model-based vehicle tracking," *IEEE Trans. Veh. Technol.*, vol. 53. no. 3, pp. 677-694, May 2004.
- [12] W. van der Mark and D. Gavrila, "Real-time dense stereo for intelligent vehicle," IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 63-77.
- [13] M. Hunt et al., "Speed control design for an experimental vehicle using a generalized gain scheduling approach," *IEEE Trans. Control Syst. Technol.*, vol. 8, no. 3, pp. 381-395, May 2000.
- [14] M. F. Rasid and B. Woodward, "Bluetooth telemedicine processor for multichannel biomedical signal transmission via mobile cellular networks," *IEEE IEEE Info. Technol. in Biomed.*, vol. 9, no. 1, pp. 35-43, Mar. 2005.
- [15] Z. Doulgeri, and T. Matiakis, "A web telerobotic system to teach industrial robot path planning and control," IEEE Trans. Educ. vol. 49, no. 2, May 2006.
- [16] K. K. Tan and H. L. Goh, "Complete mobile e-mail management," in Proc. Int. Symp. Santa Caterina on Challenges in the Internet Interdisplinary Research, 2004, pp. 29-1-29-6.

APPENDICES

Appendix A: Bosch CAN

Appendix B: Parts List for Prototype

Appendix C: Software Programs and Routines

Appendix D: Technical Support & Communications