# CPET 491/ECET 491 Senior Design Project Phase II Lecture 2

#### Spring 2013

Paul I-Hai Lin, Professor of Electrical & Computer Engr. Technology Dept. of Computer, Electrical and Information Technology

#### **Purdue University Fort Wayne Campus**

Prof. Paul Lin

### 

### Senior Design Project Activities & Milestones

- Problem Statement
  - Need identification
  - Research
  - Market and Competitor Analysis
  - · Predicted return on Investment
  - SWOT (Strength, Weaknesses, Opportunities, Threats) Analysis

Prof. Paul Lin

### Senior Design Project Activities & Milestones

- Analysis & Plan (Conceptual Design)
  - · Requirements analysis
  - Operational Requirements and Functional Analysis
  - Requirements allocation
  - · Risk analysis revisited
  - Evaluation of feasible technology applications
  - Trade-off study
  - Regulatory standards, Safety and Quality Issues
  - Proposed system requirements and specifications
  - System description with block diagrams
  - Project schedules: Tasks, Subtasks, Who, budgeted time,
  - Design review

Prof. Paul Lin

2

### Movable High-Power Senior Design Project Activities & Milestones

- Design Solution
  - Preliminary Design
    - Refined Functional Analysis
    - Refined Requirements Allocation
    - Detailed Trade-off Study
    - Test and Evaluation of Design Concepts
    - Early Prototyping
    - Acquisition Plan
    - Subsystem Design Diagrams, Testing Plan
    - System Integration and Testing Plan
    - Design Reviews
  - Detailed Design & Development

Prof. Paul Lin

#### **Trade-Off Analysis Examples**

- Zigbee Transceiver Trade-off Analysis table
- Wireless Dog Fence, 2009, Brian J. Hauer

| Chip                           | Operatin<br>g Freq | Transmit<br>Power<br>(dBm) | Sensitivi<br>ty (dBm) | Receive<br>Current<br>Consump<br>tion<br>(mA) | Price<br>(\$ per<br>unit) |
|--------------------------------|--------------------|----------------------------|-----------------------|-----------------------------------------------|---------------------------|
| CC1020<br>Transceiver          | Sub 1GHz           | 10                         | -118                  | 19.9                                          | 4.35                      |
| CC1111F8<br>System-on-<br>chip | Sub 1<br>GHz       | 10                         | -110                  | 16.2                                          | 5.85                      |
| CC2430<br>Transceiver          | 2.4 GHz            | 0                          | -92                   | 19.7                                          | 4.50                      |
| CC2500<br>Transceiver          | 2.4 GHz            | 1                          | -104                  | 12.8                                          | 2.15                      |

,

#### Risk Analysis - Revisited (Wireless Dog Fence, 2009, Brian J. Hauer)

| Severity of       | F          | E          | D      | С          | В        | A        |
|-------------------|------------|------------|--------|------------|----------|----------|
| Consequences      | Impossible | Improbable | Remote | Occasional | Probable | Frequent |
| l<br>Catastrophic |            |            | 2      |            |          |          |
| II<br>Critical    |            | 3,7        | 6      |            |          |          |
| III<br>Marginal   |            | 4          | 5      |            | 1        |          |
| IV<br>Negligible  |            |            |        |            |          |          |

- 1. Problems Writing Microcontroller Code
- 2. No Communication Between Transceivers
- 3. Part Failure
- 4. To High of Budget
- 5. Insufficient Range
- 6. Transmission Ineffective due to environmental conditions.
- 7. RSSI output not effective for ranging a signal.

### **Web-Based Parking Garage Monitoring** System for Real-Time Data & Trend Analysis Jacob Pitcher and Andrew White, 2009



Prof. Paul Lin

### Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis

- Sensor Interface
- Jacob Pitcher and Andrew White, 2009



### Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis

#### Specifications

| Supply Voltage       | 10 to 30V dc (10% max. ripple) at 43 mA,          |  |  |
|----------------------|---------------------------------------------------|--|--|
|                      | exclusive of load Above +50° C, supply voltage is |  |  |
|                      | 10 to 24V dc (10% max. ripple)                    |  |  |
| Sensing Range        | See Figure 4 and Figure 5.                        |  |  |
| Sensing Technology   | Passive 3-axis magnetoresistive transducer        |  |  |
| Supply Protection    | Protected against reverse polarity and transient  |  |  |
| Circuitry            | voltages                                          |  |  |
| Output Configuration | Two SPST solid-state outputs conduct when         |  |  |
|                      | object is sensed; one NPN (current sinking) and   |  |  |
|                      | one PNP (current sourcing).                       |  |  |
| Output Protection    | Protected against short-circuit conditions        |  |  |
| Output Ratings       | 100 mA maximum (each output) NPN saturation:      |  |  |
|                      | < 200 mV @ 10 mA and < 600 mV @ 100 mA;           |  |  |
|                      | OFF-state leakage current: < 200 microamps PNP    |  |  |
|                      | saturation: < 1.2V @ 10 mA and < 1.6V @ 100       |  |  |
|                      | mA; OFF-state leakage current: < 5 microamps      |  |  |

### Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis

#### Specifications

| Output Response      | 20 milliseconds                                  |  |  |
|----------------------|--------------------------------------------------|--|--|
| Time                 |                                                  |  |  |
| Delay at Power-Up    | 0.5 seconds                                      |  |  |
| Temperature Effect   | < 0.5 milligauss/°C                              |  |  |
| Adjustments          | Configuration of Background Condition and        |  |  |
|                      | Sensitivity Level may be set by pulsing the gray |  |  |
|                      | wire remotely via the portable programming box   |  |  |
|                      | (see page 3).                                    |  |  |
| Indicators           | Two Indicators (see Figure 2 and instructions on |  |  |
|                      | page 3):Power Indicator (Green)Configuration/    |  |  |
|                      | Output Indicator (Red/Yellow)                    |  |  |
| Remote TEACH Input   | Impedance 12K ohms (low = < 2V dc)               |  |  |
| Construction         | Housing: Anodized aluminum End Caps:             |  |  |
|                      | Thermoplastic polyester                          |  |  |
| Operating Conditions | -40° to +70°C (-40° to +158° F); 100% max.       |  |  |
|                      | rel. humidity                                    |  |  |

#### Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis

#### Specifications

| Connections      | Shielded 5-conductor (with drain) polyethylene jacketed attached cable or 5-pin Euro-style quick-disconnect PVC pigtail (see page 8 for quick-disconnect cable options) |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental    | Leak proof design is rated IEC IP69K; NEMA 6P                                                                                                                           |
| Rating           |                                                                                                                                                                         |
| Vibration and    | All models meet Mil. Std. 202F requirements                                                                                                                             |
| Mechanical Shock | method 201A (vibration: 10 to 60 Hz max.,                                                                                                                               |
|                  | double amplitude 0.06", maximum acceleration                                                                                                                            |
|                  | 10G). Also meets IEC 947-5-2; 30G 11 ms                                                                                                                                 |
|                  | duration, half sine wave.                                                                                                                                               |

Prof. Paul Lin 12

### **Movable High-Power LED Lighting System**

■ Michael Bracht 2009



Figure n. Block Diagram of Stepper Motor Control Circuit

Prof. Paul Lin

13

## 2013 Computer Engineering Technology Project

| CPET 491             | Project Title                                                     | Advisor        |
|----------------------|-------------------------------------------------------------------|----------------|
| Amnah Allboani       | Modular Biometric Monitoring System                               | Hack & Momoh   |
| Eric C. Kinzie       | Modular Biometric Monitoring System                               | Hack & Momoh   |
| Mathew C.<br>Andrews | Android Game                                                      | Steffen & Hack |
| Joshua M.<br>Anthony | Android Game                                                      | Steffen & Hack |
| Robert S.            |                                                                   |                |
| Burtnett             | iOS Puzzle Game                                                   | Luo            |
|                      | Android-based Automatic Vehicle                                   |                |
| Brent D. Clark       | Location System                                                   | Lin            |
| Adam R. Flagg        | Automatic Guita Tuner                                             | Laverghetta    |
| Christopher R.       |                                                                   |                |
| Frey                 | Auto Lynk OBD-II Scanning System                                  | Lin            |
| James A.<br>Schurger | Integrated Hydrometer System for Fermentation Testing and Control | Hack & Lin     |

Prof. Paul Lin

14

# 2013 Computer Engineering Technology Project

| ECET 491                | Project Title           | Advisor    |
|-------------------------|-------------------------|------------|
| David A. Campbell       | Digital Spring Tester   | Broberg    |
| Christopher A.<br>Stump | Digital Spring Tester   | Broberg    |
| Michael A. Denney       | Automated Sandblaster   | Steffen    |
| Basel J. Hale           | Solar Tracker           | Lavergetta |
| Brett J. Mitchell       | Solar Tracker           | Lavergetta |
| Honore' M Hodary        |                         |            |
| Tuyen H. Le             | Green House Environment | Broberg    |
| Patric M. Mania         | Green House Environment | Broberg    |

Prof. Paul Lin 15