

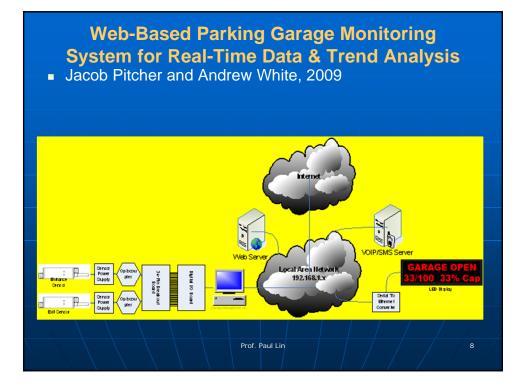
Trade-Off Analysis Examples Zigbee Transceiver Trade-off Analysis table Wireless Dog Fence, 2009, Brian J. Hauer					
Chip	Operatin g Freq	Transmit Power (dBm)	Sensitivi ty (dBm)	Receive Current Consump tion (mA)	Price (\$ per unit)
CC1020 Transceiver	Sub 1GHz	10	-118	19.9	4.35
CC1111F8 System-on- chip	Sub 1 GHz	10	-110	16.2	5.85
CC2430 Transceiver	2.4 GHz	0	-92	19.7	4.50
CC2500 Transceiver	2.4 GHz	1	-104	12.8	2.15

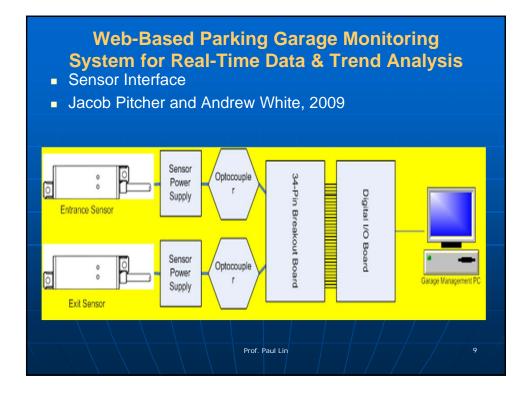
Risk Analysis – Revisited (Wireless Dog Fence, 2009, Brian J. Hauer)

Severity of	F	E	D	С	В	A
Consequences	Impossible	Improbable	Remote	Occasional	Probable	Frequent
l Catastrophic			2			
ll Critical		3,7	6			
III Marginal		4	5		1	
IV Negligible						

Prof. Paul Lin

1. Problems Writing Microcontroller Code


2. No Communication Between Transceivers

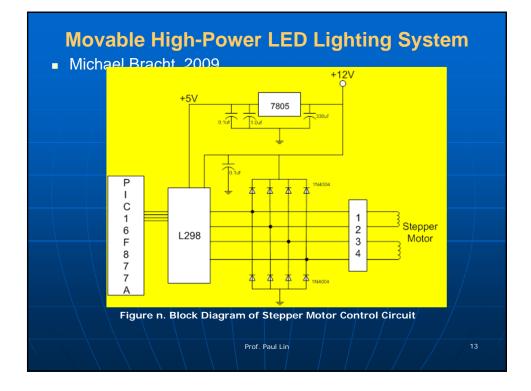

3. PartFailure

4. To High of Budget

5. Insufficient Range

- 6. Transmission Ineffective due to environmental conditions.
- 7. RSSI output not effective for ranging a signal.

Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis


Supply Voltage	10 to 30V dc (10% max. ripple) at 43 mA,
Supply Voltage	exclusive of load Above +50° C, supply voltage is
	10 to 24V dc (10% max. ripple)
Sensing Range	See Figure 4 and Figure 5.
Sensing Technology	Passive 3-axis magnetoresistive transducer
Supply Protection	Protected against reverse polarity and transient
Circuitry	voltages
Output Configuration	Two SPST solid-state outputs conduct when
	object is sensed; one NPN (current sinking) and
	one PNP (current sourcing).
Output Protection	Protected against short-circuit conditions
Output Ratings	100 mA maximum (each output) NPN saturation:
	< 200 mV @ 10 mA and < 600 mV @ 100 mA;
	OFF-state leakage current: < 200 microamps PNP
	saturation: < 1.2V @ 10 mA and < 1.6V @ 100
	mA; OFF-state leakage current: < 5 microamps

Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis Specifications

Output Response	20 milliseconds
Time	
Delay at Power-Up	0.5 seconds
Temperature Effect	< 0.5 milligauss/°C
Adjustments	Configuration of Background Condition and
	Sensitivity Level may be set by pulsing the gray
	wire remotely via the portable programming box
	(see page 3).
Indicators	Two Indicators (see Figure 2 and instructions on
	page 3): Power Indicator (Green) Configuration/
	Output Indicator (Red/Yellow)
Remote TEACH Input	Impedance 12K ohms (low = < 2V dc)
Construction	Housing: Anodized aluminum End Caps:
	Thermoplastic polyester
Operating Conditions	-40° to +70°C (-40° to +158° F); 100% max.
	rel. humidity

Web-Based Parking Garage Monitoring System for Real-Time Data & Trend Analysis Specifications

Connections	Shielded 5-conductor (with drain) polyethylene		
	jacketed attached cable or 5-pin Euro-style quick- disconnect PVC pigtail (see page 8 for quick-		
	disconnect cable options)		
Environmental	Leak proof design is rated IEC IP69K; NEMA 6P		
Rating			
Vibration and	All models meet Mil. Std. 202F requirements		
Mechanical Shock	method 201A (vibration: 10 to 60 Hz max.,		
	double amplitude 0.06", maximum acceleration 10G). Also meets IEC 947-5-2; 30G 11 ms		
	duration, half sine wave.		
	Prof. Paul Lin 12		

2013 Computer Engineering Technology Project

	an a	
CPET 491	Project Title	Advisor
Amnah Allboani	Modular Biometric Monitoring System	Hack & Momoh
Eric C. Kinzie	Modular Biometric Monitoring System	Hack & Momoh
Mathew C. Andrews	Android Game	Steffen & Hack
Joshua M.		
Anthony	Android Game	Steffen & Hack
Robert S. Burtnett	iOS Puzzle Game	Luo
Brent D. Clark	Android-based Automatic Vehicle	Lin
Adam R. Flagg	Location System Automatic Guita Tuner	Laverghetta
Christopher R. Frey	Auto Lynk OBD-11 Scanning System	Lin
James A. Schurger	Integrated Hydrometer System for Fermentation Testing and Control	Hack & Lin
	Prof. Paul Lin	14

2013 Computer Engineering Technology Project						
ECET 491	Project Title	Advisor				
David A. Campbell	Digital Spring Tester	Broberg				
Christopher A. Stump	Digital Spring Tester	Broberg				
Michael A. Denney	Automated Sandblaster	Steffen				
Basel J. Hale	Solar Tracker	Lavergetta				
Brett J. Mitchell	Solar Tracker	Lavergetta				
Honore' M Hodary						
Tuyen H. Le	Green House Environment	Broberg				
Patric M. Mania	Green House Environment	Broberg				
	Prof. Paul Lin	15				