To: P. Lin, P. Broberg and Mr. Joe Fortney

From: Gary Atchison
Date: 2/22/10
Re: Forming Die Test Press
Design Project Report

Report Outline

- Report Summary
- Problems and Corrections
- Status of the Machine
- Timeline for Completion
- Supporting Information
- System Block Diagram
- Project Gantt Chart
- Hydraulic Power Unit Calculations
- Motion Controller Information Calculations

Report Summary

Gentlemen, what you will find in the following report are updated screen shots of my project Gantt chart, the system calculations for the hydraulic power unit required for the machine and the MMC Standalone control setup file calculations. Also is a brief description of any issues that have come up along the way and their corrections, what is the status of the machine and what is left to be done. I would like to note that this machine has had an Ethernet module installed on the MMC Standalone control that will allow us to connect remotely from Marion with the machine in Germany. This will allow us to be able to modify and download control programs if needed without making a trip to Germany.

Problems and Corrections

The original electrical design of the machine was done a year ago before the hydraulic system was designed so the intention was to use the hydraulic system design of the first test press machine. It did not have a cooling fan motor on the hydraulic unit. Instead it used 2 electrical enclosure cooling fans mounted around the hydraulic unit to help cool it. Because we wanted to improve the design of the hydraulic power unit a cooling fan was included so we had to update the electrical design to include the hydraulic power unit cooling fan.

Another problem that has arose because of the changing the hydraulic power unit design from that of the original test press design is with the new design we changed from a hydraulic servo valve which uses a current input to a proportional valve which uses a voltage input. Because of this, the electrical system has been updated which requires another 24 V power supply for the proportional valve and the removal of the VC2124 which was going to be used to convert the analog $+/-10 \mathrm{~V}$ signal to a current which the servo valve used. We are currently awaiting the
arrival of the power supply so it can be installed. At that time we will remove the VC2124 converter and complete the wiring as necessary.

There was some confusion when parts were ordered for the hydraulic system and the wrong length cylinder and linear transducer were ordered. Parts were ordered for a 10 inch cylinder instead of a 15 inch cylinder. A 15 inch cylinder and a 15 inch MTS linear transducer have been ordered and are expected to arrive any time.

Status of the Machine

Presently the machine has been built allowing the installation of the hydraulic power unit and the electrical enclosure. Hoses are being routed to length so that they can be crimped. The safety pin cylinder has been installed and guards are in the process of being installed. Most of the electrical installation has been done but does not include the installation of the outputs solenoids for air control. The MS Project Gantt chart has been updated to reflect the recent progress on the machine and a document containing the calculations for the hydraulic power unit and the motion control system has been created.

What is left to be done is to complete the hydraulic hose installation and the machine wiring at which time we can begin installing the programs for the operation of the machine. Once these are complete we can begin testing and debug of the various systems. Once testing and debug are complete we can fully run the machine to make sure that all requirements have been met.

Time Line for Completion

Present: 2/19/10
Finish electrical and hydraulic installation: 3/1/10
Finish the installation of interlocks and guards: 3/1/10
Testing and Debug complete by: 3/15/10
Ship the Machine: 3/15/10 to 4/15/10 depending on machine schedule

Supporting Information

What you will find in the following information is the information for the system design, including hydraulic and motion control calculations. These will be included in the final report at the end of the semester. You will also find a block diagram that shows the basic system components and how they are connected to create a complete system. The only updated Gantt chart that will be shown are those with recent activity and those to yet be completed. I will begin on the next page with the System Block Diagram and I will provide subheadings for clarity.

System Block Diagram:

Figure 1 System Block Diagram showing interconnectivity of all components

Gantt Charts：

	0	Task Name	Duration	Start	Finish	Resource Names
1	\checkmark	\square Analysis	30 days	Mon 2／9／09	Thu 3／19／09	
2	\checkmark	\square Analyze Existing Program	1 day	Mon 2／9／09	Mon 2／9／09	Gary Atchison，Roger Beck
3	\checkmark	Review Controls and VO Opertion in Existing Sequential Code	1 day	Mon 2／9／09	Mon 2／9／09	Gary Atchison
4	\checkmark	\square Analyze Existing Controls	1 day	Mon 2／9／09	Mon 2／9／09	Gary Atchison［18\％］，Roger Beck
5	\checkmark	Review Existing Controls Usage and Wiring Schematics to determine what is needed	1 day	Mon 2／9／09	Mon 2／9／09	Roger Beck，Gary Atchison
6	\checkmark	Compare Delta Computer System with G\＆L Controls MMC to determine brand of Controls	1 day	Mon 2／9／09	Mon 2／9／09	Roger Beck，Gary Atchison
7	\checkmark	\square Order New Control System	30 days	Mon 2／9／09	Thu 3／19／09	Gary Atchison［17\％］，Roger Beck
8	\checkmark	Place order for control system components and electrical parts	30 days	Mon 2／9／09	Thu 3／19／09	Gary Atchison，Roger Beck
9	\checkmark	\square Developing the New Control System	38 days	Wed 2／11／09	Wed 4／1／09	Roger Beck，Gary Atchison
10	\checkmark	Create New Electrical Drawings	5 days	Tue 2／24／09	Mon 3／2／09	Roger Beck
11	\checkmark	Create New Ladder Program	21 days	Wed 2／11／09	Tue 3／10／09	Gary Atchison
12	\checkmark	Mock Up Control System to test Communication	1 day	Wed 4／1／09	Wed 4／1／09	Gary Atchison
13	\checkmark	Progress Report 1	1 day	Thu 9／10／09	Thu 9／10／09	Gary Atchison
14	\checkmark	Progress Report 2	1 day	Thu 10／1／09	Thu 10／1／09	Gary Atchison
15	\checkmark	Progress Report 3	1 day	Thu 10／22／09	Thu 10／22／09	Gary Atchison
16	\checkmark	Progress Report 4 Initial Proposal and 10 minute presentation	1 day	Thu 11／19／09	Thu 11／19／09	Gary Atchison
17	\checkmark	Final ECET 490 Report and Presentation	1 day	Thu 12／10／09	Thu 12／10／09	Gary Atchison
18	\checkmark	\square Develop and Order Hydraulic System	62 days	Thu 10／22／09	Tue 1／12／10	Joe Fortney，AJ Lindvall
19	\checkmark	Create New Hyd Sytem Design	18 days	Thu 10／22／09	Fri 11／13／09	A．Lindvall，Joe Fortney
20	\checkmark	Order Hyd System	45 days	Fri 11／13／09	Tue 1／12／10	A．Lindvall
21		\square Building the Press and Installing Components	25.38 days	Mon 1／11／10	Thu 2／11／10	Assembly Department，Electrical Department
22	\checkmark	Paint the machine structure	1 day	Mon 1／25／10	Mon 1／25／10	Assembly Department
23		\square Build the Press	14.75 days	Mon 1／25／10	Thu 2／11／10	Assembly Department
24	\checkmark	Assemble the Forming Head	1 day	Mon 1／25／10	Mon 1／25／10	Assembly Department
25	\checkmark	Install Brass Forming Head to Guide Pin Bushings	1 day	Fri 2／5／10	Fri 2／5／10	Assembly Department
26	国	Install Guards and Interlocking Mechanisms	2 days	Mon 2／8／10	Tue 2／9／10	Assembly Department
27	國	Install air solenoids and Safety Axis Lock Cylinders	2 days	Tue 2／9／10	Wed $2 / 10 / 10$	Assembly Department
28	國	Install Hydraulic Cylinder and Linear Transducer	1 day	Tue 2／9／10	Tue 2／9／10	Assembly Department
29	國	Install Hydraulic Hoses，Check Valves any remaining components	2 days	Wed 2／10／10	Thu 2／11／10	Assembly Department
30		\square Install Electrical Components	10.56 days	Mon 1／11／10	Fri 1／22／10	Electrical Department
31	\checkmark	Install Electrical Components such as Switches and Relays	2 days	Mon 1／11／10	Tue 1／12／10	Electrical Department
	0	Task Name	Duration	Start	Finish	Resource Names
32	\checkmark	Added Cooling Fan Output to Ladder code and Drawings	1 day	Fri 1／22／10	Fri 1／22／10	Gary Atchison，Roger Beck
33	\checkmark	Install Controis Components such as MMC，Ethernet Module，SAB，VO Blocks	1 day	Wed 1／13／10	Wed 1／13／10	Electrical Department
34	\checkmark	Install Heat Controls	1 day	Thu 1／14／10	Thu 1／14／10	Electrical Department
35	\checkmark	Install Operator interface	1 day	Thu 1／14／10	Thu 1／14／10	Electrical Department
36	國	Run and attach all wiring	3 days	Thu 1／14／10	Mon 1／18／10	Electrical Department
37	\checkmark	\square Progress Report Due January 25， 2010	1 day	Mon 1／25／10	Mon 1／25／10	Gary Atchison
38	\checkmark	Updated Progress Report Due by 5：00pm 1－25－10	1 day	Mon 1／25／10	Mon 1／25／10	Gary Atchison
39	\checkmark	Updated Flow Diagrams for clarity，created paint documents and inserted into the proposal	1 day	Mon 1／25／10	Mon 1／25／10	Gary Atchison
40	\checkmark	Added Summary，updated Table of Contents，added departments to Resources	1 day	Mon 1／25／10	Mon 1／25／10	Gary Atchison
41	\checkmark	Updated the MS Project Gantt Chart	1 day	Mon 1／25／10	Mon 1／25／10	Gary Atchison
42	\checkmark	\square Finalized Report Due February 1， 2010	1 day	Mon 21／1／10	Mon 2／1／10	Gary Atchison
43	\checkmark	Progress Report \＃1 Phase｜｜Due by 5：00pm 2－1－10	1 day	Mon 211／10	Mon 2／1／10	Gary Atchison
44	\checkmark	Update，Breakdown further the MS Project Gantt Chart Information	1 day	Mon 2／1／10	Mon 2／1／10	Gary Atchison
45	\checkmark	Add summary for any new changes and or modifications，review requirments	1 day	Mon 211／10	Mon 2／1／10	Gary Atchison
46	\checkmark	Design Report（2nd Report）Due by 5：00pm 2－22－10	1 day	Mon 2／9／09	Mon 2／9／09	Gary Atchison
47		\square Installing Hydraulics and Starting Up the Machine	308.06 days	Mon 2／9／09	Fri 3／19／10	Assembly Department
48	\checkmark	Install Hydraulic System to the Machine	3 days	Mon 2／15／10	Wed 2／17／10	Assembly Department
49		\square Setup New Control System	308.06 days	Mon 2／9／09	Fri 3／19／10	Gary Atchison
50	國	Download Operator Interface Program	1 day	Mon 3／1／10	Mon 3／1／10	Gary Atchison
51	国	Download the machine program（Ladder）	1 day	Mon 3／1／10	Mon 3／1／10	Gary Atchison
52	断	Establish Communication with MMC remotely using PicPro for Internet Downloading	1 day	Mon 3／1／10	Mon 3／1／10	Gary Atchison
53	\checkmark 全	Figure out Axis Setup Data for Motion Control（Accel，Decel，Velocity and Head Open Positions）	3 days	Mon 3／8／10	Wed 3／10／10	Consultant，Gary Atchison
54	国	Test Operator interface Communication（is it communicating with the ladder）	1 day	Tue 3／2／10	Tue 3／2／10	Gary Atchison
55	国	Test heat Control and setup parameters for the heat	1 day	Wed 3／3／10	Wed 3／3／10	Gary Atchison
56		\square Test／／O Operation	1 day	Mon 2／9／09	Mon 2／9／09	
57		Solenoid Operation（Top Die Air，Bottom Die Air）	1 day	Mon 2／9／09	Mon 2／9／09	
58		Pilot Light Operation（Power On，Run Mode，Manual Mode，Lock Pins Retracted，Lock Pins Extended）	1 day	Mon 2／9／09	Mon 2／9／09	
59		\square Test Safety Systems（Guards）	2.06 days	Thu 3／11／10	Fri 3／12／10	Gary Atchison
60	国	Test Guard Operation	1 day	Thu 3／11／10	Thu 3／11／10	Gary Atchison
61	田	Test Palm Button Operation	1 day	Thu 3／11／10	Thu 3／11／10	Gary Atchison
62	田	Test Operation of the Auto／Manual Mode Switch	1 day	Thu 3／11／10	Thu 3／11／10｜	Gary Atchison V

	3	Task Name	Duration	Start	Finish	Resource Names	
63	戒	Can we only start the hydraulics in Manual Mode using the Simultaneous Press of the Palm Buttons？	1 day	Thu 3／11／10	Thu 3／11／10	Gary Atchison	
64	國	Can the accumulator only be charged when the guards are closed？	1 day	Fri 3／12／10	Fri 3／12／10	Gary Atchison	
65	國	Does the accumulator only charge in Auto Mode？	1 day	Fri 3／12／10	Fri 3／12／10	Gary Atchison	
66	國	Do the safety Pins engage when the sliding guard door is opened？	1 day	Fri 3／12／10	Fri 3／12／10	Gary Atchison	
67		\square Test the 8 Operations of the machine as described in the flow diagrams	3.13 days	Mon 3／15／10	Wed 3／17／10	Gary Atchison	
68	田	Locking Pins Operation	1 day	Mon 3／15／10	Mon 3／15／10	Gary Atchison	
69	國	Going to Start Position	1 day	Mon 3／15／10	Mon 3／15／10	Gary Atchison	
70	國	Hydraulic Startup	1 day	Mon 3／15／10	Mon 3／15／10	Gary Atchison	Gantt Chart Sheet 2 1－22－
71	國	Homing the Machine	1 day	Tue 3／16／10	Tue 3／16／10	Gary Atchison	
72	國	Going to Start Position based on the Program Selected（1－4）from the HMM	1 day	Tue 3／16／10	Tue 3／16／10	Gary Atchison	
73	戒	Cycle Start（Machine Start）	1 day	Tue 3／16／10	Tue 3／16／10	Gary Atchison	
74	盏	Manual movement of the head（Jogging）	1 day	Wed 3／17／10	Wed 3／17／10	Gary Atchison	
75	國	Heat Control	1 day	Wed 3／17／10	Wed 3／17／10	Gary Atchison	
76	國	Test Motion Control and perform debug of motion control until proper control is established	2 days	Thu 3／18／10	Fri 3／19／10	Gary Atchison	
77	國	Test functionality of the overall systems for proper operation（All systems working together）	1 day	Fri 3／19／10	Fri 3／19／10	Gary Atchison	
78	國	Do we meet the requirements for Safety，EC，Electrical and System	1 day	Fri 3／19／10	Fri 3／19／10	Gary Atchison	
79	國	System Construction and Unit Testing Report（3rd Report）	1 day	Mon 3／22／10	Mon 3／22／10	Gary Atchison	
80	國	First Testing Report Due 5：00pm 4－5－10（4th Report）	1 day	Mon 4／5／10	Mon 4／5／10	Gary Atchison	
81	国	Second Testing Report Due 5：00pm 4－12－10（5th Report）	1 day	Mon 4／12／10	Mon 4／12／10	Gary Atchison	
82		\square Progress Report and Design Review	14.63 days	Tue 4／13／10	Fri 4／30／10		
83	國	Final Report Writing	4 days	Tue 4／13／10	Fri 4／16／10	Gary Atchison	
84	國	Final Project and Presentation	5 days	Mon 4／26／10	Fri 4／30／10	Gary Atchison	

Figure 2 Gantt Chart updated to show recent and future activity

Hydraulic Power Unit Calculations：

The following given parameters will be used to make hydraulic calculations to simulate a production speed of 40 SPM：

Time to Retract $=350 \mathrm{~ms}$
Time to Extend $=350 \mathrm{~ms}$
Closed Dwell $=500 \mathrm{~ms}$
Note：
Because this machine does not run in a continuous mode，open dwell is not considered in the calculation for head speed．Time to retract plus time to extend plus closed dwell as noted yield a 50 SPM machine rate．If we added an open dwell of 300 ms then it would be equal to a 40SPM machine．

Head Open Position 11.375 inches - Die Shut Height 7.25 inches $=4.125$ inch head stroke
Forming Pressure required $=20,000$ pounds forming force
Head weight with components $(H W)=1250$ pounds head +110 pounds components $=1360$ pounds

Friction Force $(\mathrm{FF})=.24^{*} \mathrm{HW}^{*} \cos \left(0^{\circ}\right)=.24^{*} 1360 * 1=326.4$ pounds

The pages following are the calculations to be used in the development of the Forming Die Test Press based on the above given conditions：

AverageVelocity $(V a)=4.125 i n c h e s / .350 \mathrm{~ms}=11.78$ inches $/ \mathrm{sec}$ ond
FinalVelocity $(V f)=2 * S \div t=(2 * 2.0625$ inches $) \div .175 \mathrm{sec}=23.6$ inches $/$ sec ond Using the distance and time under acceleration

Where S = Distance moved in inches $=2.0625$ inches
$\mathrm{t}=$ Time of acceleration $=.175$ seconds

Maximum Oil Flows:

Cylinder Bore $=3.25$ inches
Cylinder Rod $=2$ inch diameter
CRA $=$ CylinderRodArea $=\pi * r^{2}=3.14 * 1.0^{2}=3.14$ inches 2
CPAE $=$ CylinderPistonAreaExtending $=\pi^{*} r^{2}=3.14 * 1.62$ inches $^{2}=8.3$ inches 2
$C P A R=$ CylinderPistonArea Retracting $=C P A E-C R A=8.3$ inches $^{2}-3.14$ inches $^{2}=5.16$ inches 2

Oil Flow to Extend (OFE):

$O F E=C P A E * V f=\left(8.3 \mathrm{in}^{2} * 23.6 \mathrm{in} / \mathrm{sec}\right)=\left(195.9 \mathrm{in}^{3} / \mathrm{sec}\right) *(60 \mathrm{sec} / \mathrm{min})=$ $\left(11754 \mathrm{in}^{3} / \mathrm{min}\right) /\left(231 \mathrm{in}^{3} / \mathrm{gal}\right)=50.9 \mathrm{gal} / \mathrm{min}$

Oil Flow to Retract (OFR):

$O F R=C P A R * V f=\left(5.16\right.$ inches $\left.^{2} * 23.6 \mathrm{in} / \mathrm{sec}\right)=\left(121.8\right.$ inches $\left.^{3} / \mathrm{sec}\right) *(60 \mathrm{sec} / \mathrm{min})=$ $\left(7308 i n c h e s^{3} / \mathrm{min}\right) /\left(231 i^{2} \mathrm{inch}^{3} / \mathrm{gal}\right)=31.6 \mathrm{gal} / \mathrm{min}$

Hydraulic Oil Pressure Required to generate 20,000 pounds of forming force (HOPR):
$H O P R=$ For min g Force Required $/ C P A E=20000 / 8.3$ inches ${ }^{2}=2410$ pounds $/$ inches 2
Weight of the Head and Components (HW) + Friction Force (FF)
$\mathrm{HW}+\mathrm{FF}=1360$ pounds +326.4 pounds $=1686.4$ pounds
Find the amount of hydraulic pressure required to accelerate the head upward (PAHU):
To accelerate the 1686.4 pounds of the head at a production speed: "Use the formula"
a = acceleration rate
S = distance moved in inches
$t=$ time of acceleration in seconds
$a=(2 * S) / t^{2}$
$a=(2 * 2.0625$ inches $) / .175 \sec ^{2}=134.7$ inches $/ \mathrm{sec}^{2}$

Convert acceleration to feet/sec:

$a / 12$ inches $=\left(134.7\right.$ inches $\left./ \mathrm{sec}^{2}\right) / 12=11.23$ feet $/ \mathrm{sec}^{2}$
As well as knowing acceleration we also need to know (R) which is the Resultant Force On the Body. To find (R) use the following formula:
$\mathrm{R}=$ Resultant Force on the Body
$\mathrm{w}=\mathrm{HW}+\mathrm{FF}$
$\mathrm{g}=$ Gravitational Force (32.16 feet $/ \mathrm{sec}^{2}$) or (9.81 meters $/ \mathrm{sec}^{2}$)
$\mathrm{a}=$ acceleration rate in feet $/ \mathrm{sec}^{2}$
$R=(w / g) * a=1686.4$ pounds $/\left(32.16 \mathrm{ft} / \mathrm{sec}^{2}\right)=52.4$ footpound $/ \mathrm{sec}^{2}$
(52.4 footpound $\left./ \mathrm{sec}^{2}\right) *\left(11.23 \mathrm{ft} / \mathrm{sec}^{2}\right)=587.9$ pounds
$W=R+w=587.9$ pounds $+w=587.9+1686.4$ pounds $=2274.3$ pounds
To finish finding hydraulic pressure need to accelerate the head upward: Use the flowing formula for Pressure to Accelerate Head Upward (PAHU):
$P A H U=W / C P A R=(2274.3$ pounds $) /\left(5.16\right.$ inches $\left.^{2}\right)=441$ pounds $/$ in 2

Note:
Accumulator Pressure must be greater than or equal to the Forming Pressure (HOPR), which is 2410 pounds/inch ${ }^{2}$ because pressure is required from the accumulator for movement of the forming head.

To find the amount of pressure required for the accumulator pre-charge we must know and do the following:

1) The largest volume of oil taken from the accumulator will be at the maximum amount of head stroke (HS) which is:

Four head open positions will be needed:
20.375 inches
17.375 inches
14.375 inches
11.375 inches

Two different shut heights (closed die height) will be used for the dies:
12 inch
7.25 inch

12 inch shut height will be used with the 20.375 inch and 17.375 inch Machine Head Open Position
7.25 inch shut height will be used with the 14.375 inch and 11.375 inch Machine Head Open Position

The greatest head travel is realized when using the 20.375 inch Head Open Position with the 12 inch shut height die, so;

HS $($ HeadStroke $)=$ 20.375inch -12 inch $=8.375$ inches
2) The oil volume required from the accumulator to move the head 8.375 inches is found by the following:

Extending:

HS ${ }^{*} C P A E=8.375$ inch $^{*} 8.3$ in $^{2}=69.5$ in 3
This 69.5 inches 3 is compressed to 2410 pounds/inch ${ }^{2}$
We need to know that $.5 \%$ oil volume compression/1000 psi is:
2410 psi $/ 1000$ psi $/ .005=2.41 * .005=1.205 \%$ or .01205
Now we can finish finding oil volume from the accumulator (OFA) to move the head 8.375 inches
$O F A=(H S * C P A E) * .01205=.84 i n^{3}+(H S * C P A E)=70.34 i n^{3}$
$O F A=69.5 * .0125=.84+69.5=70.34 \mathrm{in}^{3}$

Now we can find the amount of pressure required for the accumulator pre-charge
Use the equation:
$P_{1} * V_{1}=P_{2} * V_{2}$
Where:
$\mathrm{P}_{1}=H O P R=2410$ pounds $/$ inches 2
$\mathrm{P}_{2}=$ Accumulator Pre-charge Pressure
$\mathrm{V}_{1}=$ Rated Gas Volume $=1124$ in 3
$\mathrm{V}_{2}=V_{1}-O F A=1124 \mathrm{in}^{3}-70.34 \mathrm{in}^{3}=1053.7 \mathrm{in}^{3}$
$P_{2}=\left(P_{1} * V_{1}\right) / V_{2}=(2410 * 1124) / 1053.7=2708840 / 1053.7=2570.8 p s i$ Accumulator Pressure

PVR = Pump Volume Required at a 4.125" stroke
P = Pump = 4gallons $/$ minute
Stroke $=4.125$ inches
A = Cylinder Volume Extending
B = Cylinder Volume Retracting
$A=$ CPAE $*$ Stroke $=8.3$ inches $^{2} * 4.125$ inches $=34.24$ inches 3
$B=C P A R *$ Stroke $=5.16$ inches $^{2} * 4.125$ inches $=21.29$ inches 3
$P V R=A+B=34.24+21.29=55.53$ inches 3
$P V R$ Converted to gallons $=.24$ gallons
TTR = Time Required to Refill the Accumulator at a 4.125" stroke
$T T R=.24$ gallons required at .066 gallons/second (4gallonsl/minute) $=3.64 \mathrm{sec}$
M = Motor Size Required
$\mathrm{P}=$ Pump $=$ 4gallons $/$ minute
$\mathrm{P}_{2}=2571$ pounds/inches ${ }^{2}$
$\mathrm{K}_{1}=1714$
$\mathrm{K}_{2}=.85$
$\mathrm{M}=\frac{P_{2} * P}{K_{1} * K_{2}}=\frac{2571 * 4}{1714^{*} .85}=7.06$ HorsePower
We will use the common size 10 HorsePower motor

The volume of oil required to manually move the forming head at 1 inch/sec is as follows:
To manually extend the head:
1gallon $=231$ inches 3
CPAE * 1inch $=8.3$ inches ${ }^{3}$
8.3inches ${ }^{3} / 231$ inches $^{3}=.036$ gallons $/$ sec ond
(.036gallons / sec ond $) *(60 \mathrm{sec}$ onds $/ 1)=2.16$ gallons $/$ min ute

Using a 4-gallons/minute pump, the velocity that can be achieved manually extending the head 1inch/second:

4 gallons $/$ min ute $/ 2.16$ gallons $/$ minute $=1.85 i n c h e s /$ sec ond
To manually retract the head:
1gallon $=231$ inches 3
$C P A R *$ inch $=5.16$ inches 3
5.16inches ${ }^{3} /$ 231inches $^{3}=.023$ gallons $/$ sec ond
(.023gallons / sec ond $) *(60 \mathrm{sec}$ onds $/ 1)=1.34$ gallons $/$ min ute

Using a 4 gallons/minute pump, the velocity that can be achieved manually retracting the head 1inch/second:
$4 \mathrm{gpm} / 1.34 \mathrm{gpm}=2.98$ inches $/$ sec ond

Motion Controller Information Calculations:

The setup information for the motion controller to make its calculations requires the following input data.

Resolution to be used for calculations $=.00025$ inch

Axis Data:

Output Type = D/A
Input Type = Encoder
Output Slot Channel = 1.1
Input Slot Channel = 1.1
Encoder Driver = Differential
Encoder Type = Quadrature

Scaling Data Requires:

Input Scaling:
Feedback Units $=4\left(4^{*}\right.$ resolution to $=.001 "$ of an inch $=4^{*} .00025=.001$ inch $)$
Ladder Units $=1(1 \mathrm{LU}=.001$ inch so values in the ladder to $=1$ inch are $* 1000)$

$$
\text { So } 4 \text { inches in the ladder }=4000
$$

Ladder Units/Axis Units = 1 (These are the units of measurement for the system and must be integers, at 1 no further scaling is needed)

Output Scaling:

Commanded Voltage $=10000 \mathrm{mv}$ (This is equal to 10 V which is the analog signal the Controller outputs)
Motor RPM at Voltage = 23.6 inches/second or 1416 inches/minute (This is our calculated Vf)
Counts/Motor Rev = 4000 pulses/inch (Based on the resolution, 4000*. $00025=1$ inch)

Iterator Data:

Velocity Limit $=\begin{aligned} & V f *(\text { Counts } / M t r \operatorname{Re} v) *(A U / L U) *(L U / F U) \\ & 1416 * 4000 * 1 *(1 / 4)=1,416,000 A U / \text { min ute }\end{aligned}$

Acceleration Ramp $=\begin{aligned} & \text { VelocityLimit } / t= \\ & 1416000 / .175=8,091,428 A U / \min \text { ute } / \text { sec } \text { ond }\end{aligned}$
Deceleration Ramp $=\begin{aligned} & \text { VelocityLimit } / t= \\ & 1416000 / .175=8,091,428 A U / \text { min } u t e ~\end{aligned}$ sec ond

Controlled Stop Ramp $=\begin{aligned} & \text { VelocityLimit } / t^{*} 10^{1}= \\ & 1416000 / .175=80,914,280 A U ~ / \text { min } u t e ~\end{aligned}$ sec ond

Move Accel/Decel Max Accel $=\begin{aligned} & (3 / 2) * \text { VelocityLimit } / 3 \text { sec } \text { onds }= \\ & (3 / 2) * 1416000 / 3=708000 A U / \mathrm{min} / \mathrm{sec}\end{aligned}$
Move Accel/Decel Constant Jerk = 3* Max Accel/3 = 708000 AU/min/sec/sec
Based on previous projects the following are givens:
Slow and Fast Velocity Filters $=0 \mathrm{~ms}$
Slow/Fast Velocity Threshold $=0$ AU/minute
Rollover Position $=0 \mathrm{AU}$
Software Upper Limit $=+100000$
Software Lower Limit $=-100000$
Ignore Limits = Yes
Resume able Estop Allowed? = No

Position Data:

```
Input Polarity = Negative
Output Polarity = Negative
Analog Output Offset \(=0 \mathrm{mv}\)
Feed Forward \% = 0\%
Proportional Gain (Kp) = 2000 (AU/min)/(AUFE)
Integral Gain \((\mathrm{Ki})=0(\mathrm{AU} / \mathrm{min}) /(\mathrm{AUFE} * \mathrm{~min})\)
Derivative Gain \((\mathrm{Kd})=0(\mathrm{AU} / \mathrm{min}) /(\mathrm{AUFE} / \mathrm{min})\)
+ Integral Error Limit \(=+100\)
- Integral Error Limit = -100
\(\left.\begin{array}{rl}\text { Following Error Limit }= & (\text { Counts } / \text { Motor } \operatorname{Rev}) / 8 *(A U / L U) *(L U / F U) \\ & 4000 * 8 * .250=125 A U\end{array}\right)\)
```

Update rate for the axis $=1.0 \mathrm{~ms}$
In Position Band $=10 \mathrm{LU}(\mathrm{AU} / \mathrm{LU})=10 \mathrm{AU}$ This will be fine tuned on start up

Note:
The servo file setup data is used to determine the movement of the proportional valve during operation. We do not enter values for voltage for moving the valve during different modes of operation. The motion controller uses the values entered above plus for certain moves we provide a position and a rate to the motion controller and it adjust the valve accordingly through its analog output to the valve.

