Realize Your Product Promise®

High Power Electronics Design

Zed (Zhangjun) Tang ANSYS, Inc June 3, 2014

- Part I: EMI/EMC
- Part II: Multiphysics Thermal/Structural

ANSYS Part I: EMI/EMC

- EMI/EMC
 - Magnetic Field
 - Electric Field
 - Conducted Fields
 - Radiated Fields
 - Testing and solutions

 Simulation is solving EMI/EMC problems both quantitatively and qualitatively

"Electronics is outpacing the basic construction of these boards . . . we're going to have to change how we do things." - Paul Huray, Ph.D.

Professor of Electrical Engineering, University of South Carolina

High Power Electronics/Motor Drives – EMI/EMC

- * Power Device (IGBT, MOSFET, Power Diode) model extraction
- * Busbar/Cable Parasitics extraction (frequency dependent LCR model)
- * System Integration PWM frequency/control algorithm
- * Conducted/Radiated EMI/EMC

6.5kV IGBT Module Characteristics

6.5kV IGBT Module Analysis

Introduction

- Include package in IGBT
 performance
- Find DC current distribution

- Find switching currents for power dissipation
- Use power dissipation to determine environmental electromagnetic fields

Model design developed at Alstom/Pearl

Module layout verification

- The module contains 8 IGBTs in parallel: does each IGBT receive the same amount of current?
- If the current flows un-evenly, this will cause mechanical stress and reliability issues.
- Electromagnetic simulation is required. We use Maxwell3D.

ANSYS ElectroMagnetic Study

The layout in imported from the CAD tool

The DC solver is used

The input current (600 A) is defined

The sink (return current path) is defined

Outputs: conduction path and current distribution

ANSYS ElectroMagnetic Study

ANSYS ElectroMagnetic Study

The end IGBTs see less current than the center ones.

This can cause reliability issues as the center IGBTs will be overloaded

An optimization of the copper tracks can be made in order to equalize the currents.

Igbt1a and Igbt4a have the highest quantity of current

J[A/m^2]

1.0000e+007 7.3416e+006 5.3899e+006 3.9570e+006 2.9051e+006 2.1328e+006 1.5658e+006 1.1496e+006 8.4396e+005

6.1960e+005 4.5489e+005 3.3396e+005

2.4518e+005 1.8000e+005

Extracting parameters is straightforward as the nets are automatically assigned.

ANSYS Confidential

ANSYS Parasitics Extraction

• The simulation outputs consist of the RLC matrices for different frequencies

Solutions: Pack_igbt_v4 - Design_simp	olifie1				
Simulation: Setup1	Sweep1	AC RL	•		
Davies Madelians					
Design Vallation.					
Profile Convergence Mesh Statistics Matr	rix				
Resistance Units: ohm	Matrix	0 (MHz) E	kport 🛨		
✓ Inductance Units: nH	▼ Original ▼	All Freqs			
		collecteurpack:collecteur1b	collecteurpack:collecteur2a	collecteurpack:collecteur2b	collecteurpack:collecteur3a
Frea: 0 (MHz)					
collecteurpack:collecteur1a	0.00024714, 47.273	0.00010662, 38.024	0.00024714, 47.376	0.00010662, 37.924	0.00019129, 44.721
collecteurpack:collecteur1b	0.00010662, 38.024	0.00035739, 50.514	0.00010662, 38.057	0.00035739, 50.476	0.00010663, 41.674
collecteurpack:collecteur2a	0.00024714, 47.376	0.00010662, 38.057	0.00025298, 47.561	0.00010662, 37.955	0.00019129, 44.82
collecteurpack:collecteur2b	0.00010662, 37.924	0.00035739, 50.476	0.00010662, 37.955	0.00036322, 50.52	0.00010663, 41.57
collecteurpack:collecteur3a	0.00019129, 44.721	0.00010663, 41.674	0.00019129, 44.82	0.00010663, 41.57	0.00036871, 55.342
collecteurpack:collecteur3b	0.00010658, 38.665	0.00018615, 39.885	0.00010658, 38.694	0.00018615, 39.843	0.00010658, 37.826
collecteurpack:collecteur4a	0.00019129, 44.637	0.00010663, 41.644	0.00019129, 44.731	0.00010663, 41.543	0.00036287, 55.168
collecteurpack:collecteur4b	0.00010658, 38.79	0.00018615, 39.948	0.00010658, 38.822	0.00018615, 39.901	0.00010658, 37.951
collecteurpack:d1a	0.00024131, 47.067	0.00010662, 37.984	0.00024131, 47.157	0.00010662, 37.886	0.00019129, 44.591
collecteurpack:d1b	0.00010662, 38.143	0.00035155, 50.485	0.00010662, 38.18	0.00035155, 50.434	0.00010663, 41.799
collecteurpack:d2a	0.00019129, 44.534	0.00010663, 41.611	0.00019129, 44.623	0.00010663, 41.514	0.00035703, 54.972
collecteurpack:d2b	0.00010658, 38.956	0.00018615, 40.026	0.00010658, 38.992	0.00018615, 39.974	0.00010658, 38.118
emetteurpack:dio1a	0, 12.452	0, 9.791	0, 12.401	0, 9.8142	0, 9.099
emetteurpack:dio1b	0, 5.5942	0, 14.206	0, 5.4701	0, 14.299	0, 7.805
emetteurpack:dio2a	0, 11.151	0, 13.035	0, 11.11	0, 13.059	0, 15.496
emetteurpack:dio2b	0, 6.5151	0, 8.0262	0, 6.3914	0, 8.1293	0, 4.6768
emetteurpack:emetteur1a	1				
		Close			
			1		

ANSYS System Integration

How do we import the results from Q3D?: Q3D dynamic link

- 2 Types of links: Single Frequency or Frequency dependent
- No need to manually import output file
- Simplorer incorporates directly the Q3D project
- If some results are not available, Simplorer dynamically launches Q3D
- Parameters and variables can be passed between S8 and Q3D

Technische Informa	ation / Technical Information	ı	6	2U	ρε	2C
IGBT-Module IGBT-Modules	FZ 600 R 65 KF1			Н	ŀ₽	
Höchstzulässige Werte / Ma Elektrische Elgenschaften / Elec	aximum rated values trical properties					
Kolieitor-Emitter-Sperspennung coliector-emitter voltage	T ₄ =125°C T ₄ =25°C T ==40°C	Vces		6500 6300 5800		v
Koliektor-Dauergieichstrom DC-collector current	T _c = 80 °C T _c = 25 °C	I _{CANN}		600 1200		A A
Periodischer Kollektor Spitzenstrom repetitive peak collector current	t, = 1 ms, T _c = 80°C	I _{CSM}		1200		A
Gesamt-Verlustleistung total power dissipation	Tc=25°C, Transistor	Pix		11,4		ĸw
Gate-Emitter-Spitzenspannung gate-emitter peak voltage		V_{088}		*/- 20V		v
Dauergleichstrom DC forward ourrent		le .		600		A
Periodischer Spitzenstrom repetitive peak forw. current	t, = 1 ms	I _{ERM}		1200		A
Grenziastintegral der Diode Pt - value, Diode	$V_{ij}=0V, t_{j}=10ms, T_{ij}=125^{\circ}C$	I ² t		165		k A²s
Isolations-Prüfspannung insulation test voltage	RMS, f = 50 Hz, t = 1 min.	$V_{\rm BOL}$		10,2		ĸv
Teilenfladungs Ausselzspannung partial discharge extinction voltage	RMS, f = 50 Hz, Q _{PO} typ. 10pC (acc. To IEC 1287)	$V_{\rm BOL}$		5,1		ĸv
Charakteristische Werte / C Transistor / Transistor	haracteristic values	1 14	min.	typ.	max.	
Kollektor-Emitter Sattigungsspannung collector-emitter saturation voltage	I _C = 6004, V ₁₀ = 15V, I _U = 25 C I _C = 6004, V ₁₀ = 15V, I _U = 125 °C	VCR est		4,3 5,3	4,9 5,9	v
Gate-Schwellenspannung gate threshold voltage	$V_{c} = 100 \text{mA}, V_{cij} = V_{cij}, T_{cj} = 25^{\circ}\text{C}$	Volger	6,4	7,0	8,1	v
Gateladung gate charge	V ₀₆ = -15V +15V	Qa	-	8,4	-	μC
Eingangskapazität input capacitance	f = 1MHz, $T_{\rm ej}$ = 25°C, $V_{\rm CB}$ = 25V, $V_{\rm BB}$ = 0V	Cus		84	-	nF
Kollektor-Emitter Reststrom collector-emitter cut-off current	V _{CE} = 6300V, V _{SE} = 0V, T _{v1} = 25°C V _{CE} = 6500V, V _{SE} = 0V, T _{v1} = 125°C	Ices	-	0,6 60	-	mA mA
Gate-Emitter Reststrom	V _{cs} = 0V, V _{cs} = 20V, T _e = 25°C	loes			400	nA

- Accurate models of the semiconductors are needed to achieve a good circuit simulation
- Simplorer offers a parameterization tool for IGBTs
- The user needs to import the data from the datasheet

ANSYS IGBT Characterization

ANSYS IGBT Characterization

Once all the curves and data are entered, start extraction

The tool fits the data to the internal Simplorer model using Genetic Algorithm

											Simplorer 🔀	
Dv	namic M	odel Inn	ut [10/	13]						×	i) Fitting complete.	
		ouerinp	ac [107	x0]								
											ОК	
	Tj[℃	[] Vce [\	'] Ic [A]	Eon [m]] Eoff [m.] Err [mJ]	td(on) [ns] td(off)[ns]	Enable	Note		
				~	~		~					
	125	3600	600	5900	3500	0	720	0	4	Nominal Values	\sum_{i}	
	0	3600	600	0	0	0	0	0		Data at different Tj		
	125	0	600	0	0	0	0	0		Data at Vce smaller than nominal Vce	γ	
	125	0	600	0	0	0	0	0		Data at Vce larger than nominal Vce		
	125	3600	0	0	0	0	0	0		Data at Ic smaller than nominal Ic	Parameters - U1 -	×
	125	3600	0	0	0	0	0	0		Data at Ic larger than nominal Ic	Freewheeling Diode External Connectors	Output / Display
											Electrical Parameters Thermal Pa	rameters
											Name U1	Show Name
											Parameters	
											Electrical Behavior Level Electrica Parameters (Value, Variable, Expre-	ssion)
											Basic dynamic V	alue Linit 🔺
											static TNOM 125	Re
											Disable Breakthrough Model Static VNOM 3600	Nc
L											1 static INOM 600	Nc
\Box	Calculate D	ynamic D	ependen	icy							static SNOM_ON 330000	00 Nr
								Show Lo	g	Options Extraction	static SNOM_OFF 330000	00 Nr
	Import	Model	1	c.,	ua Madal	1				Park Novt > Cancol	External Synchronization	
	mport	mouel		58	ve model						<u>t</u>	

Characterization tool

Component dialog

ANSYS IGBT Characterization

Test Circuit

rise time= 40 μ s fall time = 50 μ s

ANSYS Confidential

The power pulse duration is much smaller than the rise/fall time of Ic and Vce

FTT of the power through lgbt1a

Most of the power level is below 110 MHz

- There is very high power going through the IGBTs (almost 60 000 W in this study) during a very short period of time (60 ns). This switching can cause EMI issues in the inverter, but also in the surrounding equipment
- To be answered using the finite element method in HFSS:
 - Will the module radiate?
 - Are the field levels surrounding the module within mandated levels?

Frequency range	Electric field strength, E (V/m)	Magnetic field strength, H (A/m)	Magnetic flux density, Β (μΤ)	Equivalent plane wave power density, S _{eq} (W/m ²)	Contact current, I _c (mA)	Limb induced current, I _L (mA)
0 — 1Hz	_	1,63x10 ⁵	2x105	_	1,0	_
1 — 8 Hz	20 000	1,63x10 ⁵ /f ²	2x105/f2	_	1,0	_
8 — 25 Hz	20 000	2x104/f	2,5x104/f	—	1,0	—
0,025 — 0,82kHz	500/f	20/f	25/f	_	1,0	_
0,82 — 2,5 kHz	610	24,4	30,7	_	1,0	—
2,5 — 65 kHz	610	24,4	30,7	_	0,4 f	—
65 — 100 kHz	610	1 600/f	2 000/f		0,4 f	—
0,1 — 1 MHz	610	1,6/f	2/f	—	40	—
1 — 10 MHz	610/f	1,6/f	2/f	—	40	_
10 — 110 MHz	61	0,16	0,2	10	40	100
110 — 400 MHz	61	0,16	0,2	10	—	—
400 — 2 000 MHz	3f ⁹ 2	0,008f ^{1/2}	0,01f ^½	f/40	_	—
2 — 300 GHz	137	0,36	0,45	50	_	

Regulators impose maximum levels of electric fields close to electric equipment.

In the 10-110 MHz range:

•

•

Exposure limits defined by European Community

Emax=61V/m

- The structure is discretized with adaptive meshing. The meshing frequency is 100 MHz
- The frequency sweep ranges from 15MHz to 120 MHz

Solution Setup	Edit Sweep
General Options Advanced Defaults	Sweep Name:
Setup Name: Setup1	Sweep Type:
Solution Frequency: 100 MHz 💌	Type: Start
Adaptive Solutions	Stop
Maximum Delta S 0.02	🔽 Save Field
Use Matix Convergence Det magnitude and mase	Time Do
Use Defaults	Interpolating Sv
	Error Toleranc
OK Cancel	

	Sweep1			◄
Sweep Type:	Discrete			
Frequency Se	tup		Frequency	
Type:	LinearCount		15MHz	
			20.526315789473	
Start	15 MHz <u> </u>	Display >>	26.052631578947	
Stop	120 MHz 💌		31.578947368421	
Count	20		37.105263157894	
Count	120		42.631578947368	
Time D	omain Calculation			
Time D	omain Calculation	DC Extrapolati	on Options	
Time D - Interpolating S Max Solution	omain Calculation	DC Extrapolati Extrapola Minimum	on Options te to DC Solved Frequency 0.1	GH
Time D	omain Calculation weep Options s: 50 ce: 0.5 %	DC Extrapolati Extrapola Minimum	on Options te to DC Solved Frequency 0.1	GH
Time D Interpolating S Max Solution Error Toleran Adv.	omain Calculation weep Options s: 50 ce: 0.5 % enced Options	CCExtrapolati	on Options te to DC Solved Frequency 0.1	GH

25

For each frequency, the power amplitude is entered

mag E @ 100 MHz, Power = 10 000W

- The E field is very localized close to the module even at 100 MHz
- However, the very high power can lead to large values of E field even far from the module
- This design is fine at 110MHz.

	Power	E field at 1m
Spectrum (MHz)	(W)	(V/m)
115.7024793	2308.359536	10.35553171

ANSYS Part II: Multiphysics -- Outline

Context / Introduction Component level Modeling System level Modeling – Electrical Domain Multiphysics Modeling - Workbench Conclusions

ANSYS Context/ Introduction

A (Power) Component is the combination of semi-conductors (IGBT, diodes, ...) and associated BusBar or PCB. This presentation details how this component is designed:

- 1 First stage consists in optimizing the geometry layout of the BusBars, Connectors, PCBs and finding the best Semiconductor types for a given specification.
 - This design is established with a pre-defined test circuit
 - It's a mix of Electrical Modeling and 3D Modeling.

2- Second stage consists in using this component in its real environment (loads, sources, actual waveforms) to determine the exact current waveform that are seen by the Component.

3 -Finally, The current waveforms are used as a source for a Electro-thermal-Mechanical analysis

ANSYS Context/Introduction

Multi-physics Modeling is used at the component level and a the system level

- Each physics is simulated with High Fidelity Solvers
- Workbench is used to couple the different physics
- Simplorer is used as a Power Electronics simulator and System integrator

Component Level Modeling

Example of EMC/EMI Oriented Model design developed at Alstom *

« Double-pulse » tests and measurements are standard for validating components in the Train industry. The Busbar, the IGBT and Diode are characterized on a pre-defined test procedure.

Questions to be answered:

• For an imposed IGBT type, what is the best Busbar layout ?

We are able to perform virtual testing of these components combining :

- Circuit simulation for the Electrical Characteristics of semiconductors
- 3D Modelisation of the RLC

32 © 2013 ANSYS, Inc. June 3, 2014

The switching of these power modules are operated at "low frequency" (1kHz-20kHz). However, the highest frequency that we need to capture is related to the rising time of gate voltage. It's about 10ns, therefore Q3D is solved up until 100MHz ($f_{max} = \frac{1}{2 \times t}$)

ANSYS Confidential

We use ROM to capture electrical characteristics of the BusBar layout

This virtual prototype of the power component enables Geometry validation of the busbar based on electrical criteria. It's a mix of 3D and circuit simulations.

« Double-pulse » Virtual Test Results

Obtained Results:

Validation of the component (IGBT/ Busbar layout)

Moreover, in train applications, power components are used in parallel as it is necessary to achieve high power requirements ad high reliability.

It is very easy to validate the power components in parallel in their system environment looking at:

•Overshoot, Oscillations, Losses, ...

Derating

Voltages /currents at the switch off of the IGBT

BUS	SBAR COM	IPARISON		Icom=1000A	Vbus=500V	
GEO	OMETRY c	ll/dt [kA/µs]	dV/dt [kV/µs]	DV [V]	Lloop[nH]	Static Derating [%]
	1	4	16	238	59.5	11
	2	4	15	< 186	46.5	11
	3	3.6	15	223	62	22
36	© 2013 ANSYS, Inc	c. June 3, 2014	4	ANSYS Confidential	,	· · · · · · · · · · · · · · · · · · ·

System level Modeling – Electrical Domain

Power Cables Characteristics are simulated

Specifics of the Motor cables:

- High Currents/ Low Frequency with almost sinusoidal at the Stator
- Very high dV/dt, Voltage Switching
- Forts dV/dt, Voltage-based PWM (MLI)

ANSYS Confidential- Capacitance effects are also included

ANSYS Confidential

Voltage waveforms of the PWM

Command signal applied at the IGBT gate

Asynchroneous PWM with Fcom>>10xFstat

Average IGBT is used because:

- Very long simulation: t > 1 s
- We don't need switching details
- Switching losses are fitted to the datasheet values and measured values.

Références

- 1. Pierre Solomalala, Emmanuel Batista, « Différents aspects de la modélisation multi-physique au sein du laboratoire PEARL/PRIMES », UGM ANSYS, 2009.
- 2. Emmanuel Batista, Vincent Delafosse, «Simulating EMC/EMI Effects for High Power Inverter Systems », Ansoft Inspiring Engineering, 2008.

ANSYS Confidential

Some Results

Multiphysics Modeling in Workbench

ANSYS Multiphysics Modeling

Workbench enables a seamless 3D coupling flow.

chém	a de	projet																
	•		A					•	В					•	C			
	1	🙀 Max	well 3D					1	🐻 Thermique stationnaire					1	🪾 Structure statique			
	2	🖌 Geo	metry	 Image: A second s				2	🥏 Données matériaux	\checkmark	4		-	2	🥏 Données matériaux	× 🔒		
	3	👰 Setu	Jp	× -			2	3	🞯 Géométrie	\checkmark	4		-	3	🞯 Géométrie	× 🔒		
	4	🔊 Solu	ution	× .	N	i/n	n	4	🎯 Modèle	~	4 7	°C	-	4	🌍 Modèle	× 4		
		Répartition	n Courani	t 3D			-	5	🍓 Configuration	~	4		-	5	🍓 Configuration	× 🖌		
								6	🕼 Solution	<				6	💼 Solution	× 🖌		
								7	🥪 Résultats	7	4			7	🥪 Résultats	× 🖌		
						Г	->	8	🛱 Paramètres					8	🛱 Paramètres			
									Température Busbar						Deformation Cuivre Busb	ar		
																		_
					h												4	Δ
																	11	
						ţ,	🖓 Er	nsei	mble de paramètres									

A parameter Analysis is used to determine what insulation material is needed to achieve a maximum displacement level

ANSYS Multiphysics Modeling

Maxwell 3D simulation: Current Calculation

- Input: average current that is computed in the system simulation in Simplorer
- Output: Ohmic losses are calculated based on the volumic current calculations.

Static Thermal Module of ANSYS: Temperature distributions

Heat Flux on Copper parts

Maximum temperature on Copper parts

ANSYS Multiphysics Modeling

Static Thermal Module of ANSYS: Temperature distributions

Insulation part Temperatures

Phase Conductors Temperatures

Static Stress Analysis

Y axis Displacements

X axis displacements

Static Stress Analysis

Total Displacements

- A Multi-physics Multi level modelisation method has been presented
 - Dynamic IGBTS have been used at the component level
 - Average IGBT have been used at the system level
- State Graphs enable easy development of the command algorithm used to drive each inverter
- The Stress values are accurate as we have loaded the structure with real waveforms from system analysis.

THANK YOU