
 24 Chapter 2 Java Programming Concepts and Structures

Ch 2. Java Programming Concepts and Structures

2. Java Programming Concepts and Structures

2.1 Java Reserved Keywords

2.2 Data types

2.3 Variables

2.4 Operators

2.5 Flow controls and Exception Handling

2.6 Classes and Objects

2.7 Math Objects

 Paul I. Lin

 25 Chapter 2 Java Programming Concepts and Structures

2.1 Java Reserved Keywords
abstract boolean break byte case

catch char class continue default

do double else extends false

final finally float for if

implements import instanceof int interface

long native new null package

private protected public return short

static super switch synchronized this

throw throws transient true try

void volatile while

* Reserved but not used (const, goto)

Keywords for Data Type Declarations

- Java has two fundamental data types: primitive and class object types.

- The primitive data types are divided into the following categories:

- Numeric data types keyword: byte (8-bit), short (16-bit), int (32-bit),

long (64-bit), float (32-bit), double (64-bit)

- Character data type keyword: char (16-bit Unicode: '\u0000' to

'\uFFFF'),

- Boolean data type keyword: boolean (8-bit), false, true

Keywords for Flow Controls

- If, else

- for, while, do

- switch, case, break, default

- continue

- return

- try, catch, finally, throw

 Paul I. Lin

 26 Chapter 2 Java Programming Concepts and Structures

Class, Method, and Data Fields Qualifiers

- package

- import

- interface, class, abstract

- extends, implements

- private, protected, public, static, final, volatile

- synchronized, throws, transients, void, native, super

Keywords for Class Construction
package

- Used to create a class library of many classes

import

- It is used to import class libraries into a user program.

class

- The keyword class begins a class declaration and is followed by a

class name

- It can be seen as a template for creating (instantiating) objects for use

in a program

static

- Static methods and data fields (variables) are shared by all instances

of a class

- static class methods are for operating on the class itself, rather than for

specific class instances.

- static class fields (variables) are defined to be shared by all instances

of a class.

- The main() of every Java stand-alone program is a static method.

extends

- For creating a subclass from super class (inheritance) or to extend the

definition of a super or parent class.

- The subclass is called the derived class

 Paul I. Lin

 27 Chapter 2 Java Programming Concepts and Structures

interface

- Defines methods, like a class, but does not provide any

implementations for those methods

implements

- Used to create a new class from an interface (a class with all abstract

methods and/or abstract data)

abstract

- For identifying abstract classes and methods

- The implementation of an abstract class is deferred to its subclasses

and may not be instantiated

final

- The final modifier indicates that a declared class may not be extended.

Variable and Constant Declarations
final

- The final modifier indicates that the declared variable may not be

changed, therefore, it is treated as a read-only variable or a constant.

synchronized

- For marking synchronization method that control resource sharing

among multiple threads

transient

- This modifier indicates that a variable may not be serialized

- A transient variable may not be declared as final or static

 Paul I. Lin

 28 Chapter 2 Java Programming Concepts and Structures

volatile

- For declaring a variable that may be accessed by several threads

without synchronization

Access Control Modifiers
public

- Used to specify a class or interface to be accessed outside its package

- Used to enable a data field, method, or constructor to be accessed

anywhere its class may be accessed.

- public class: a class may be accessed outside of its package.

- public interface: an interface may be accessed outside of its package.

- public field variable: a variable may be accessed anywhere that its

class may be accessed.

- public method: a method may be accessed anywhere that its class

may be accessed.

- public constructor

- public inner class: an inner class may be accesses anywhere its class

may be accesses

protected

- Used to enable a data field, method, or constructor to be accessed by

classes or interfaces of the same package; or by subclass of the class

in which it is declared

- protected field variable

- protected methods

- protected constructors

- protected inner class

private

- Used to restrict a data field, method, or constructor to be accessed

only within the class interfaces of the same package; or by subclass of

the class in which it is declared

- private field variable

 Paul I. Lin

 29 Chapter 2 Java Programming Concepts and Structures

- private methods

- private constructors

- private inner class

Other Keywords

• Methods Declaration

 return // Return the program control

 void // Not return value

• Creating Object

 new // An operator for constructing an object or instance of its class

• Reference to a current running object

 this

• Determine Object Reference

instanceof // Determine whether an object reference is an instance of the

class, interface, or array type

• Inheritance

 super // Referring to its methods or variables of its parent class

 extends // for making a subclass

• Exception Handling

 try

 catch

 throw

 throws

 finally

• Mixed Language Programming

 native

- The native keyword is used for identifying native methods written in

C/C++.

- The Java Native Interface (JNI) is then used to create a shared

dynamic link library for use in mixed-language programming

applications.

 Paul I. Lin

 30 Chapter 2 Java Programming Concepts and Structures

2.2 Java Data Types

Numeric data types:

 byte - 1-byte (8-bit), signed small integer (-128 to 127)

 short - 2-byte or16-bit signed integer (-32768 to 32767)

 int - 4-byte or 32-bit signed integer (-2147483648 to 2147483647)

 long - 8-byte or 64-bit signed integer

 float - 4-byte (±38E, 32-bit), IEEE-754 standard

 double - 8-byte (±308E, 64-bit), IEEE-754 standard

Character data type:

 char (2 bytes Unicode; www.unicode.org)

Boolean data type:

 boolean (1-byte: true, false)

2.3 Java Identifiers
A Java identifier is a name that uniquely identifies a variable, method, or class.

The identifier naming restrictions are

• All identifiers must begin with a letter, an underscore (_), or a dollar sign

($)

• An identifier can include, but not begin with numbers

• An identifier cannot include a white space (tab, space, linefeed, or

carriage return)

• Identifiers are case-sensitive

• Java keywords cannot be used as identifiers

 Paul I. Lin

 31 Chapter 2 Java Programming Concepts and Structures

There are two types of variables in Java:

• Primitive variables

• Object (Instance) variables

All primitive variables are defined within a class. There is no global variable in the

Java. Every variable has

• a name: a valid identifier

• a type: boolean, byte, char, short, int, long, float, double

• a size

• a value

Variables

• An identifier is a variable name with a type and a valid identifier that

consists of a sequence of letters and digits.

• Java sets no limits on the number of characters in a name.

• The first character must be a letter.

• The under score _ is considered a letter.

• A Java keyword cannot be used as a name.

• Uppercase and lowercase letters are distinct (case sensitive).

• Java allows explicit data type conversion between numeric types:

 byte -> short -> int -> long -> float -> double

• However, a boolean type cannot be converted to other data type.
 double x = 10.90;

 int n = (int) x; // type demotion

 Paul I. Lin

 32 Chapter 2 Java Programming Concepts and Structures

Constant Variables
Constants are also called named constants or read-only variables.

A constant variable is created by placing the keyword final at the beginning of

the declared variables, for example:

class thisClass

{ public static final double n = 12.00; }

Visibility and Lifetime of Variables
The scope rules for identifiers are as listed below. The rules determine when and

where the variables are available for accessing:

• Class scope

o Methods

o Instance variables

• Block scope

o Available only within a pair of the beginning and ending braces "{ }"

• Method scope

o Local variables: variables declared in a method are available for

access only within the method

o Methods

Recommended Java Variable Naming Conventions:
Variable Naming

• Recommend that the first letter of a word is in lowercase:

o wages

o hourlyRate

 Paul I. Lin

 33 Chapter 2 Java Programming Concepts and Structures

Read-Only Variables

• All uppercase letter with an underscore to connect words.

MAX_AGE

MAX_COUNT

• Combining final and static
static final private int MIN = 0;

static final private int MAX = 10000;

Method Naming

• Method names are like variable names with the following naming

conventions, namely, the first letter of each, except the first, word is

capitalized:

 getName()

 readAddress()

Class Naming

• Standard class packages are given in lowercase

• The first letter of each word in the class name is capitalized

o public String

o public StringBuffer

Examples:
int counter;

Define firstName and lastName as references for referring to String type objects:

String firtstName;

String lastName;

 Paul I. Lin

 34 Chapter 2 Java Programming Concepts and Structures

Literal Constants
- Integer literals:

Octal: 0, 01, 02, 03, 04, 05, 06, 07, 010, 011, 012, 013,
014, 015, 016, 017

Decimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15

Hexadecimal: 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8,
0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf or (0xA, 0xB, 0xC, 0xD,

0xE, 0xF)

- ASCII character literals:
‘a’, ‘b’, … ’z’

‘A’, ’B’, .. ‘Z’

‘0’, ‘1’, ‘2’, …’9’

- String literals:
“The Java programming Language”

 “W”

- Floating-point number literals
 123.0 0.0 0.1E-6

- Character escape sequence
\b backspace \u0008

\t tab \u0009

\n linefeed \u000a

\r carriage return \u000d

\" double quote \u0022

\' single quote \u0027

\\ backslash \u005c

\DDD Octal character

\uxxx Unicode Character

 Paul I. Lin

 35 Chapter 2 Java Programming Concepts and Structures

- System defined literals
Decimal Hex Octal
 0 0x0 0
 1 0x1 01
 2 0x2 02
 3 0x3 03
 4 0x4 04
 5 0x5 05
 6 0x6 06
 7 0x7 07
 8 0x8 010
 9 0x9 011
 10 0xA 012
 11 0xB 013
 12 0xC 014
 13 0xD 015
 14 0xE 016
 15 0xF 017

Example 2-1: A Java example shows how to declare and initialize variables.
/* DataTypeEx1.java
 *
 * E:\LinJava\LinJavaExs\2_DataTypes>javac datatypeex1.java
 * E:\LinJava\LinJavaExs\2_DataTypes>java DataTypeEx1
 * Data Type Example
 * -----------------
 * letter_A = A
 * Max Count = 100
 * Tolerance = 1.0E-9
 */

public class DataTypeEx1
{ public static void main(String[] args)
 {
 String heading = "Data Type Example";
 String line = "-----------------";
 char letter_A = 'A';
 int max_count = 100;
 double tolerance = 0.000000001;
 System.out.println(heading);
 System.out.println(line);
 System.out.println("letter_A = " + letter_A);
 System.out.println("Max Count = " + max_count);
 System.out.println("Tolerance = " + tolerance);
 }
}

 Paul I. Lin

 36 Chapter 2 Java Programming Concepts and Structures

Example 2-2: A program displays the un-initialized variables.
/* UnInitVars.java
 *
 * This program displays default values of uninitiazlized variables.
 *
 * E:\LinJava\LinJavaExs\2_DataTypes>javac UnInitVars.java
 * E:\LinJava\LinJavaExs\2_DataTypes>java UnInitVars
 * Printing Uinitialized variables and Objects
 * ---
 * flag = false
 * byte_val = 0
 * char_val =
 * short_val = 0
 * int_val = 0
 * long_val = 0
 * float_val = 0.0
 * double_val = 0.0
 * floatArray[3] = 0.0 0.0 0.0
 */
public class UnInitVars
{
 boolean flag;
 byte byte_val;
 char char_val;
 short short_val;
 int int_val;
 long long_val;
 float float_val;
 double double_val;

 public static void main(String[] args)
 {
 UnInitVars newApp = new UnInitVars();
 newApp.run();
 }
 void run()
 {
 float[] floatArray = new float[3];
 String heading = "Printing Uinitialized variables and Objects";
 String line = "---";
 System.out.println(heading);
 System.out.println(line);
 System.out.println("flag = " + flag);
 System.out.println("byte_val = " + byte_val);
 System.out.println("char_val = " + char_val);
 System.out.println("short_val = " + short_val);
 System.out.println("int_val = " + int_val);
 System.out.println("long_val = " + long_val);
 System.out.println("float_val = " + float_val);
 System.out.println("double_val = " + double_val);
 System.out.println("floatArray[3] = " + floatArray[0] + " "
 + floatArray[1] + " " + floatArray[2]);
 }
}

 Paul I. Lin

 37 Chapter 2 Java Programming Concepts and Structures

2.4 Java Operators
Operators are normally used for the following purposed:

- Combining primitive expressions into complex expression

- Perform arithmetic operations

- Logic operation and reasoning

- Comparison and reasoning

Comments // --- one line comment

 /* Beginning comment -- C style

 */ End of comment

 /**

 */ -- for automatic documentation generation

Binary Arithmetic Operators

+ Addition operator: int n = 10 + 20;

- Subtraction operator: int n = 20 - 10;

* Multiplication: int n = 20 * 10;

/ Division: int n = 20 / 10;

% Remainder or modulus: int n = 1 % 2;

Unary Arithmetic Operators

+ Positive operand: +10

- Negative operand: -10

++ Increment by 1:

int num = 10;

int n = ++num; //pre-increment (n holds 11)

int n = num++; //post-increment (n holds 10)

-- Decrement by 1:

int num = 10;

int n = --num; //pre-decrement (n holds 9)

int n = num--; //post-decrement (n holds 10)

 Paul I. Lin

 38 Chapter 2 Java Programming Concepts and Structures

The Bit-Wise Operators

~ Bit-wise NOT: int num = ~0x01;

 //(result 0xFE or 254)

& Bit-wise AND: int num = 0x02 & 0x01;

 //(result 0x00)

| Bit-wise OR: int num = 0x02 | 0x01;

 //(result 0x03)

^ Bit-wise EXOR: int num = 0x0F ^ 0xF0;

 //(result 0xFF or 255)

>> Shift Right: // Shift right one bit is the same

 // as div by 2

int num = 8 >> 2; //(num holds 2)

<< Shift Left: // Shift left one bit is the same

 // as times 2

int num = 8 << 2; //(num holds 32)

Assignment Operators

= Assignment

+= Add and assign

-= Sub and assign

*= Multiply and assign

/= Divide and assign

%= Remainder and assign

**= Exponentiation and assign

<<= Shift left and assign

>>= Shift right and assign

&= Bit-wise AND and assign

|= Bit-wise OR and assign

^= Bit-wise XOR and assign

 Paul I. Lin

 39 Chapter 2 Java Programming Concepts and Structures

Relational Operators

== Equal

!= Not equal

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

Logical Operators
&& AND

|| OR

! NOT

String concatenation operator
 +

2.5 Flow Controls and Exception Handling

Control Statements

if(condition){

 statements;

 }

if(condition){

 statements;

 }

else{

 statements;

}

for(statement1; condition; statement2)

{ block statement;}

 Paul I. Lin

 40 Chapter 2 Java Programming Concepts and Structures

do{

statements

} while(condition);

switch(expression){

 case 1:

 statements;

 break;

 case 2:

 statements;

 break;

 …….

 case n:

 statements;

 break;

 default:

 statements;

 break;

}

 Paul I. Lin

 41 Chapter 2 Java Programming Concepts and Structures

Example 2-3: A for loop example prints upper case ASCII characters.
//forLoop.java
//
//E:\LinJavaExs\2_JavaConcepts>java forLoop
//
//Printing Upper Case ASCII Characters:
//
//AA BB CC DD EE FF GG HH II JJ
//KK LL MM NN OO PP QQ RR SS TT
//UU VV WW XX YY ZZ
//
import java.io.*;
public class forLoop
{
 public static void main(String[] args)
 {
 System.out.println("\nPrinting Upper Case ASCII Characters:\n");
 for (char uChar = 'A'; uChar <= 'Z'; uChar++)
 {
 System.out.write(uChar); // print ASCII characters
 System.out.print(uChar); // print ASCII numbers
 System.out.print('\t');
 }
 }
}

 Paul I. Lin

 42 Chapter 2 Java Programming Concepts and Structures

2.6 Classes and Objects

Definitions:

- A class is a data type of an object and the object is an instance of its

class.

- An object is a collection of fields or data values (properties or

attributes) plus methods for manipulating data.

- Object creation: an object is created using the new operator, which

invokes a constructor method of a class to initialize an new object as

requested.

Class

• public methods (interfaces) as seen by clients

• Internal implementation

• Super class

java.lang.Object - the common superclass for all Java classes

Class Inheritance

• Reusing codes

• Classes inherits the instance variables and methods of the classes above

them in the hierarchy

• A class can extend its inherited characteristics by adding instance

variables and methods

• A class can extend its inherited characteristics by overriding inherited

methods

Abstract Class

• Classes that must never be instantiated in a class hierarchy

• For defining features and behavior common to their subclasses

• In Java, the class Object is at the base or root of Java’s class hierarchy

 Paul I. Lin

 43 Chapter 2 Java Programming Concepts and Structures

Protected Method
When a method should be visible to subclass but not to the rest of the system

Abstract Method
A method abstract (in an abstract class) when that method must be implemented

by all subclasses

Final Method
Declare a method final when that method should be inherited but not overridden

by any subclass

Super Method
When overriding a super-class method, use that super-class method (super)

Methods
main()

JVM sends the message main() to a program object

Execution of the method main()

 Paul I. Lin

 44 Chapter 2 Java Programming Concepts and Structures

Example 2-4: This example program does the following tasks to display system's

date and time in a dialog window:

1. Create a user define class DateTime.

2. Create a Date instance called thisDate to obtain system's time and date

information.

3. Create a String instance called today that contains time and date

information in String format.

4. Use the showMessageDialog() method to display time and date in the

dialog window.

A object diagram of this system is as shown below.

thisDate todayString

class DateTime
main()

displayWindow

 Paul I. Lin

 45 Chapter 2 Java Programming Concepts and Structures

// DatTime.java
//
// This program is a date and time display applications.
// 1. Create a user define class DateTime.
// 2. Create a Date instance called thisDate to obtain system's time and
// date information.
// 3. Create a String instance called todayString that contains time and
date
// information in String format.
// 4. Use the showMessageDialog() method to display time and date
// in the dialog window.
//
//
import javax.swing.JOptionPane;
import java.util.*; // Date class

public class DateTime
{
 public static void main(String [] args)
 {
 Date thisDate = new Date();
 String todayString = thisDate.toString();

 JOptionPane.showMessageDialog(null, "Today: " + todayString, "Date
 and Time", JOptionPane.PLAIN_MESSAGE);

 System.exit(0);
 }
}

 Paul I. Lin

 46 Chapter 2 Java Programming Concepts and Structures

Example 2-5: A Java program uses class String.

/* StringTypeEx1.java
 *
 *
 */
public class StringTypeEx1
{ public static void main(String[] args)
 {
 String msg = "Hello";
 String e = " "; // Empty string
 e = "Set this string later";
 String m1 = "Computer";
 String m2 = "Electrical and Computer Engineering";
 System.out.println("msg = " + msg);
 System.out.println("e = " + e);
 System.out.println("m1 = " + m1);
 System.out.println("m2 = " + m2);

 }
}

Output
E:\LinJava\LinJavaExs\2_DataTypes>javac StringTypeEx1.java
E:\LinJava\LinJavaExs\2_DataTypes>java StringTypeEx1
msg = Hello
e = Set this string later
m1 = Computer
m2 = Electrical and Computer Engineering

 Paul I. Lin

 47 Chapter 2 Java Programming Concepts and Structures

2.7 The Math class
Methods of Math class are defined as the following format:
public static int abs(int aNumber)

public static long abs(long aNumber)

public static float abs(float aNumber)

public static double abs(float aNumber)

public static double exp(double aNumber)

public static double log(double aNumber)

public static int max(int aNumber, int bNumber)

public static long max(long aNumber, long bNumber)

public static float max(float aNumber, float bNumber)

public static double max(float aNumber, float bNumber)

public static int min(int aNumber, int bNumber)

public static long min(long aNumber, long bNumber)

public static float min(float aNumber, float bNumber)

public static double min(float aNumber, float bNumber)

public static double pow(double aNumber, double bNumber)

public static double random()

public static void srandom(double a)

public static int round(float aNumber)

public static int round(double aNumber)

public static double sin(double aNumber)

public static double cos(double aNumber)

public static double tan(double aNumber)

public static double asin(double aNumber)

public static double acos(double aNumber)

public static double atan(double aNumber)

public static double atan2(double aNumber)

 Paul I. Lin

