
Chapter 3 Java Object-Oriented Programming and Enterprise Applications 48

Chapter 3

Java Object-Oriented Programming
for

Enterprise Applications

- An Overview of Enterprise Applications

- Object-Oriented Features: class members and methods, access

control, overloading, constructors, destructors, finalizers, inheritance,

abstract class, and interface

- Using existing classes

- Building User Defined Classes: members, methods, fields

- Object reference

- Static Members

- Properties of Interfaces and Inner classes

- Inner classes

- Using Packages

- Java Language Package

- Java Utilities Package

- Inheritance: extending classes, overriding, interfaces, and finalizer

methods, overloading methods, subclasses

- Examples and Case Studies

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 49

An Overview of Enterprise Applications

Information gathering and processing is the essence of the modern enterprises,

which deal with their global customers, suppliers, shippers, and their own internal

corporate divisions.

Earlier Three-Tier Architecture:

• Presentation Tier (clients): dumb terminals -> sophisticated GUI

• Business logic (middle tier): Transaction-Processing Monitor; COBOL or

PL/I

• Resource Tier (Databases and others): some sort of databases such as

DB2, ORACLE, Microsoft SQL, etc

Modern Three-Tier Architecture (Distributed-component systems):

• Presentation Tier (clients): sophisticated GUI with remote proxies that

communicate requests to the distributed components (Java Remote

Method Invocation, CORBA - Component Object Request Broker

Architecture, and DCOM) over the network

• Business logic (middle tier): Distributed objects on the middle tier

• Resource Tier (Databases and others): some sort of databases such as

IBM DB2, ORACLE, Microsoft SQL relational databases

N-Tier Computing Model that currently used in enterprise and Web

applications allow a mixture of Computer Hardware and/or Software layers

to provide a modular collection of Information Services. This model is

often referred to as:

• Thin-client

• Browser-based

• Network-centric

• Multi-tiered computing

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 50

Advantages of this model may include

• Component-based Clients, Interfaces, Agents, Transactions,

Middleware, and Servers flexibly arranged into a variety of

configurations.

• Programs partitioned into Tiers allow each layer or component

part to be developed, managed, deployed and enhanced

independently.

W eb Browser
or

Java applet

Application
Server

W eb Server

Database-1Database-2Database-n

HTTP
RMI

CORBA
etc

ODBCJDBC/ODBC JDBC

Client Tier
Middle Tier

Data Tier

 Figure 3.1 N-Tier Distributed Computing Model

Java Object-Oriented Features

In modern business systems, object-oriented languages are used to

• Improve development of GUIs

• Simplify access to information

• Encapsulate the business logic

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 51

Object-oriented principles of encapsulation, inheritance, and polymorphism will

allow the software that models the business to be encapsulated into business

objects, and become flexible, extensible, and reusable.

• In object-oriented programming, classes are templates for defining

properties and behavior functions within a program.

• Each instance of a class represents an object

• Inheritance is a form of software reuse by deriving a more specialized new

class from previously defined superclass.

• Classes (subclasses and superclasses) are the fundamental building

blocks of any Java program.

• Each Java class must be derived from a superclass. This establishes an

"is a" relationship.

• Java supports only single inheritance. A new Java class (subclass or child

class) is derived from only one superclass or parent class. Additional

instance variables and instance methods of its own are also added.

• Java classes are split into three basic components:

o a class declaration

o data

o methods

• The extends keyword is used to derived a new class.

The Object class

• In Java, the Object class is the root superclass of all Java classes. All

other classes inherit methods from this Object class.

• The Object class does not contain any data

Classes

• An abstract may contain non-abstract methods. Abstract classes are

classes that must never be instantiated in a hierarchy. An abstract class is

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 52

normally created with features and behavior common to be inherited by

their subclasses.

• An interface is similar to a class. It is created to offer abstract method

definitions and/or static final data (if nay). All methods in an interface

must be abstract. To create a new class that uses interface, the

implements keyword is used.

• A class may only inherit from one abstract super class, but it can

implement any number of interfaces.

• The public class is saved as a disk file with the same name as that of the

public class that it contains

• A public keyword precedes the class keyword will make that class

accessible to all other classes; omit the public keyword to limit the access

to within the package which contains the class.

Class Members

• A Java class consists of public, protected and/or private methods and

data variables.

• Methods are normally declared public and instance variables are usually

declared private.

• All public methods and data variables can be considered as a public

interface of a class. It means that public class members have global

visibility and can be accessed by any objects and offers services that the

class provides to all other classes

• Java class private methods and private variables are only accessible to

instances within their own class. A private method cannot be called from

outside its class. The only way to access a private variable is by calling

one of the public class methods.

• The protected class members (methods and variables) are accessible

only to methods of classes in the same package and to all subclasses

(derived classes) of that class (parent class).

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 53

• A static variable will be created only one copy to be shared by all objects

of a class. A beneficial side effect is that the static class members exist

and accessible even when no objects of that class exist. A user can

access this static class member (variable) by prefixing its class name and

the dot operator. For example:

o public static namedVariable // accessible within the class

o private static namedVariable // accessible to outside

o System.out,println() // Can be used without instantiating a System

object

o System.out.print() // Can be used without instantiating a System

object

• The final modifier can be used to specify that a variable has a constant

value; or that a method cannot be over ridden in a subclass. For example:

o final public int hourlyRate = 6.5;

• The synchronized modifier is used to specify that a method for a safer

thread in a multithreading environment

• The native modifier is used to identify methods that have native

implementations in C/C++

• Constructors

o A constructor is a special method with the same name as that of

the class name.

o A class may have more than one constructor.

o A call to the superclass constructor is via the super reference.

• The finalizer method or destructor

o Each class can have a finalizer method that is declared with the

name finalize.

o The finalizer method should always be defined as protected so

that it can only be accessed by it subclasses only.

o The superclass finalizer should be used (if any) so that it can

ensure all parts of an object are properly garbage collected through

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 54

the garbage collection thread (a low-priority thread) and returning

resources to the system.

o An example:

protected void finalize()

 {

 // statements

super.finalize();

 }

Java Class Declaration

• To declare a Java class, we will need the following components:

o Optional access modifiers: public, protected or private

o The class keyword

o A valid class name or identifier

o Optional keyword: extends and implements

o Class members: methods, and data fields (variables)

Example 3-1: Subclass "is a" super class relationship

Super class Subclass

Vehicle Car, trucks

Student UndergraduateStudent, GraduateStudent

Shape Circle, Triangle, Rectangle

Loan CarLoan, HomeImrovementLoan, MorgageLoan

Account CheckingAccount, SavingAccount

Employee Staff, Engineer, StaffEngineer, Consultant, Contractor

Some Notes on Methods

Protected Method
When a method should be visible to subclass but not to the rest of the

system

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 55

Abstract Method
A method abstract (in an abstract class) when that method must be

implemented by all subclasses

Final Method
Declare a method final when that method should be inherited but not

overridden by any subclass

Super Method
When overriding a super-class method, use that super-class method

(super)

main Method
main()

JVM sends the message main() to a program object

Execution of the method main()

Declaring Java Class Methods

• May have the following access modifiers: public, protected, private, or

package

• A static method can be declared to be used for the class-wide information

which can be used by the class rather than an instance of a class

• The public static void main(String [] args) method is the entry point of

a standalone Java program. The main must be declared static so that it

can be invoked even when on object of the class has been created.

• Argument list - a comma-separated list of parameter declarations; for

main() it must be an array of String array with args as the named object

• A return type:

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 56

o void - for the method that does not return any value, such as the

main which does not return a value to the Java Virtual Machine

(JVM)

o A primitive type - boolean, byte, char, short, int, long, float, and

double

o Object type - return a reference to an object of any class or

interface

o Array type - return a reference to a Java array

Example 3-2: An example of declaring a new class

public class Employee
 {
 // Data Members
public String firstName;
public String mInitialName;
public String lastName;
public int employeeID;
protected float salary;

// Constructors
public Employee (String firstName, String mInitialName,
 String lastName, int empID, float salary)
 {
 this.firstName = firstName;
 this.mInitialName = mInitialName;
 this.lastName = lastName;
 this.employeeID = empID;
 this.salary = salary;
 }

// Methods
// public float increSalary(float percent);
// public float getSlary();
// public String getLastName();
// public String getFirstName();
// public String getmInitialName();
// public boolean validateEmpID();
}

Object Instance

• Once a class is declared, a programmer can create or instantiate objects

of that class:
 className ObjectReference = new className;

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 57

• In Java, the new is the only operator used to invoke a constructor to

instantiate a single instance of a named class and returns a reference to

that object.

• An object can be referenced by multiple object variables. If the class

shippedItems is already declared, the shippedItem object can be created

and shipToMexico and airToMexico are called object references to the

shippedItems object:
 shippedItems shipToMexico = new shippedItems();

 shippedItems airToMexico = shipToMexico;

• The keywords for object reference are:

o this - an object reference to the current object itself for each

object

o super - a reference to the object of its parent class

• To see if one particular object is an instance of a specific class or an

implementation of a specified interface, the instanceof operator can be

used:

 if(shipToMexico instanceof shippedItems)

 //some statements

• The dot (.) operator is required to access instance variables within an

object

• The dot (.) operator is also used to invoke methods within an object.

Using Java Class Methods

• Passing arguments

o A primitive type(s): value(s) will be copied

o Object: object reference will be copied

• Java methods are invoked using the following syntax:

o The keyword this and super may be used instead of an object's
name

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 58

Class Inheritance

• In java, class inheritance is a kind of code reuse which is achieved

through extends some class and implements some interface

• Classes inherits the instance variables and methods of the classes above

them in the hierarchy

• A class can extend its inherited characteristics by adding instance

variables and methods

• A class can extend its inherited characteristics by overriding inherited

methods

Example 3-3: An example of class inheritance.

public class Employee extends Object{ }; // Super class

public class FullTimeEmployee extends Employee{ }; // Subclass

public class PartTimeEmployee extends Employee{ }; // Subclass

public class Contractor extends Employee{ }; // Subclass

public class StudentEmployee extends PartTimeEmployee; // Sub -sub class

Inner Classes

• Most Java classes are defined at the package level, meaning that each

class is a member of a particular package

• Inner classes are classes defined inside other classes for use mainly as

event handling purposes.

• Inner classes can be private, protected or public

• Naming convention for inner classes

o Inner classes with names: OutClassName$InnerClassName.class

o Anonymous inner classes: OuterClassName$#.class, where #

starts from 1

• To access the outer class's this reference, use OuterClassName.this.

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 59

Implementing Java Interface

• Interfaces are abstract classes that are left completely unimplemented.

• Java interfaces may include a set of public abstract methods or a set of

constants for class implementation.

• A Java interface includes the following definition:

o public interface InterfaceName

o a set of public abstract methods

Example 3-4: An example of creating Java interfaces.
public interface TruckShipping

 {

 public abstract double volume();

 public abstract String getCustomer();

 public abstract String getDistance();

 public abstract String getdestination():

 }

public interface MathConstants

 {

 public static final int PI = 3.14159;

 public static final int E = 2.73.14159;

 public static final int PI = 3.14159;

 }

 public interface EmailMessage

 {

 public abstract String setSender();

 public abstract String addRecipient();

 public abstract String addCC();

 public abstract String addContent();

 public abstract String setSubject();

 public abstract String send();

 }

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 60

The Language Package
 The Java language package is known as java.lang, which make up the core of

the Java language. The most important classes contained in this package are:

• public class Object

• Data type wrapper classes:

o public final class Boolean extends Object implements Serializable

o public final class Character extends Objects implements

Serializable, Comparable

o public final class Double extends Number implements Comparable

o public final class Float extends Number implements Comparable

o public final class Integer extends Number implements Comparable

o public final class Long extends Number implements Comparable

• public final class Math extends Object

• public final class Sting extends Object implements Serializable,

Comparable

• public final class System extends Object

• public interface Runtime extends RunTimeOperations, Objects, IDLEtity

• Thread classes

o public class Thread extends Object implements Runnable - used to

create a thread of execution in program

o public class ThreadDeath extend Errors - used to clean up thread

o public class ThreadGroup extends Object -

o public class ThreadLocal extends Object - ThreadLocal objects are

typically private static variables in classes that wish to associate

state with a thread (e.g., a user ID or Transaction ID).

o public interface Runnable{ void run(); }

• Classes

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 61

o public final class Class extends Object implements Serializable -

provides such run time information as name, type, and parent for a

class

o public abstract class ClassLoader extends Object - for loading a

class file

• Exception-handling classes:

o public class Throwable extends Object implements Serializable

o public class Exception extends Throwable

o public class Error extends Throwable

• public abstract class Process extends Object

The Utilities Package
The java.utili is the name for referring to this package. It contains the following

classes:

• public class Date extends Object implements Serializable, Cloneable,

Comparable - calendar date and time

• Data structure classes

o public class BitSet extends Object implements Cloneable,

Serializable - this class implements a growable vector of bits

o public abstract class Dictionary extends Object - for hashtable

(key, value)

o public class Hashtable extends Dictionary implements Map,

Cloneable, Serializable

o public class Properties extends Hashtable

o public class Vector extends AbstractList implements Lists,

Cloneable, Serializable - for implementing a growable array of

objects

o public class Stack extends Vector - Last-In-First-Out

o public interface Enumeration - for generating a series of elements

• public class Random extends Object implements Serializable - for

generating a stream of pseudorandom numbers

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 62

• public class StringTokenizer extends Object implements Enumeration -

for breaking a string into tokens

• public interface Observer - for observing changes of objects

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 63

Example 3-5: Instantiating employee objects

// declare paulLin as an employee
Employee paulLin;
// Then instantiate the object paulLin
paulLin = new Employee("Paul", "I", "Lin", 1234, 100.00E3);

// or

// declare and instantiate the object paulLin in one step
Employee paulLin = new Employee("Paul", "I", "Lin", 1234, 100.00E3);

Example 3-6: The Object class specification as shown below is defined in the

J2SE API.
public class Object

 {

 // Constructor

public Object()
// Methods

// Returns the runtime class of an object. That Class object
// is the object that is locked by static synchronized methods
// of the represented class.

public final class getClass()

// Returns a hash code value for the object. This method is
// supported for the benefit of hashtables such as those
// provided by java.util.Hashtable.

public int hashCode()

// Indicates whether some other object is "equal to" this one.
public boolean equals(Object obj)

// Creates and returns a copy of this object. The precise
// meaning of "copy" may depend on the class of the object.

protected Object clone()throws CloneSupportedException

// Returns a string representation of the object.
public String toString()

// Wakes up a single thread that is waiting on this object's
// monitor. If any threads are waiting on this object, one of
// them is chosen to be awakened. The choice is arbitrary and
// occurs at the discretion of the implementation. A thread
// waits on an object's monitor by calling one of the wait
// methods.

public final void notify()

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 64

// Wakes up all threads that are waiting on this object's monitor.
// A thread waits on an object's monitor by calling one of the
// wait methods.

public final void notifyAll()

// Causes current thread to wait until either another thread
// invokes the notify() method or the notifyAll() method for
// this object, or a specified amount of time has elapsed.

public final void wait(long timeout)throws InterruptException

// Causes current thread to wait until another thread invokes the
// notify() method or the notifyAll() method for this object,
// or some other thread interrupts the current thread, or a
// certain amount of real time has elapsed.

public final void wait(long timeout,
 int nanos)
 throws InterruptedException

// Causes current thread to wait until another thread invokes the
// notify() method or the notifyAll() method for this object.
// In other word's this method behaves exactly as if it simply
// performs the call wait(0).

public final void wait()
 throws InterruptedException

// Called by the garbage collector on an object when garbage
// collection determines that there are no more references to
// the object. A subclass overrides the finalize method to
// dispose of system resources or to perform other cleanup.

protected void finalize()
 throws Throwable

Example 3-7: The Point class as shown below is defined in the J2SE API

specification.
public class Point extends Point2D implements Serializable

 {

 // Field Variables

 public int x; // The x coordinate, set to 0 by default.

 public int y; // The y coordinate, set to 0 by default.

 // Constructors

 // Constructs and initializes a point at the origin

 // (0, 0) of the coordinate space.

 public Point()

 { x = 0; y =0; }

 // Constructs and initializes a point at the specified

 // (x, y) location in the coordinate space.

 public Point(int thisX, int thisY)

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 65

 { x = thisX; y = thisY; }

 // Constructs and initializes a point with the same

 // location as the specified Point object.

 Point(Point p)

 { x = p.x; y = p.y; }

 // Methods

 // Determines whether two points are equal.
 boolean equals(Object obj)

 Points getLocation()

 double getX()

 double getY()

 // Moves this point to the specificed point in the (x, y) coordinate
 // plane. This method is identical with setLocation(int, int).
 void move(int newX, int newY)

 (x = newX; y = newY;}

 void setLocation(double newX, double newY)

 { x = (int) newX; y = (int) newY; }

 void setLocation(int newX, int newY)

 { x = newX; y = newY; }

 void setLocation(point P)

 // toString() Returns a string representation of this point and its
 // location in the (x, y) coordinate space. This method is intended
 // to be used only for debugging purposes
 String toString()

 // Translates this point, at location (x, y), by dx along the x axis
 // and dy along the y axis so that it now represents the point
 // (x + dx, y + dy).
 void translate(int dx, int dy)

 { x += dx; y += dy; }

}

Example 3-8: The Random class for generating random numbers and sequences

as listed below is extracted from the J2SE API specification:
public class Ramdom extends Object implments Serializable

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 66

 {

 // Constructors:

 public Random(){ this(System.currentTimeMillis(); }

 // Generates a random number

 public Random(long seed){ setSeed(seed); }

 // Generates a random number using a long seed number

 // Class Methods

 // Generates next random number

 synchronized protected int next(int bits)
 {

seed = (seed * 0x5DEECE66DL + 0xBL) & ((1L << 48) - 1);
 return (int)(seed >>> (48 - bits));
 }

 // Returns the next pseudorandom, uniformly distributed

 // boolean value from this random number generator's sequence.

 boolean nextBoolean()

 void nextBytes(byte[] bytes)

 Generates random bytes and places them

 into a user-supplied byte array.

 float nextFloat()

 Returns the next pseudorandom, Gaussian ("normally")

 distributed double value with mean 0.0 and standard

 deviation 1.0 from this random number generator's

 sequence.

 double nextGaussian()

 Returns the next pseudorandom, Gaussian ("normally")

 distributed double value with mean 0.0 and standard

 deviation 1.0 from this random number generator's sequence.

 // Returns the next pseudorandom, uniformly distributed

 // int value from this random number generator's sequence.

 public int nextInt() { return next(32); }

 // Returns a pseudorandom, uniformly distributed int value

 // between 0 (inclusive) and the specified value (exclusive),

 // drawn from this random number generator's sequence.

 public int nextInt(int n)
 {

 if (n<=0)
 throw new IllegalArgumentException("n must be positive");

 if ((n & -n) == n) // i.e., n is a power of 2
 return (int)((n * (long)next(31)) >> 31);

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 67

 int bits, val;
 do {
 bits = next(31);
 val = bits % n;
 } while(bits - val + (n-1) < 0);
 return val;
 }

 long nextLong()

 Returns the next pseudorandom, uniformly distributed

 long value from this random number generator's sequence.

 // Sets the seed of this random number generator using a

 // single long seed.

 synchronized public void setSeed(long seed)

 {

 this.seed = (seed ^ 0x5DEECE66DL) & ((1L << 48) - 1);

haveNextNextGaussian = false;
 }

Creating and Using Packages

• A package is a group of related classes and interfaces

• It is a mechanism for managing a large group of classes and interfaces

while avoiding naming conflicts

• To create a package

o Include package statement at the beginning of a class file, for

example:
package company.employee;

o The package naming mirror the folder or directory structure of the

class files:
company\employee

• You can import packages to your program. It does not read in, or load the

referenced packages.
import company.employee;

import java.awt.*;

import java.lang.*;

Guidelines for Creating Packages

• Classes in a package must be declared public

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 68

• Use directory structure, for examples

o java.lang //

o java.swing //

• Choose a unique Internet domain name as class path name

• Choose a package name and add a package keyword

• Write a package and package name at the first line of the source code file

Examples of Using Java Defined Classes

Example 3-9: Using methods in the System class

The class is defined as follows:

 public final class System extends Objects

in the package called java.lang.System. It is a final class that cannot be

instantiated. The methods and data fields contained in this final class are

standard input stream, standard output stream, error output stream; a means of

loading files and libraries; and a utility method for quickly copying a portion of an

array.

All methods defined in this class can be used directly in your program. For

examples:

// To terminate or exit current JVM

System.exit(0);

// To obtain the system's time

long systemTime = System.currentTimeMills();

Some class methods are listed below:

 // Terminates the current JVM

static void exit(int status)

 // Runs the system garbage collector
static void gc()

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 69

 // Return the current system time in milliseconds
static long currentTimeMills()

 // Copies an array from the specified source array, beginning at
 // the specified position, to the specified position of the
 // destination array.

static void arrayCopy(Object src, int src position, Object dst, int
dst_position, int length)

static String getProperty()
Returns system's properties with the following: KEY and VALUE.

Key Description of Associated Value
java.version Java Runtime Environment version
java.vendor Java Runtime Environment vendor
java.vendor.url Java vendor URL
java.home Java installation directory
java.vm.specification.versio
n Java Virtual Machine specification version

java.vm.specification.vendor Java Virtual Machine specification vendor
java.vm.specification.name Java Virtual Machine specification name
java.vm.version Java Virtual Machine implementation version
java.vm.vendor Java Virtual Machine implementation vendor
java.vm.name Java Virtual Machine implementation name

java.specification.version Java Runtime Environment specification
version

java.specification.vendor Java Runtime Environment specification vendor
java.specification.name Java Runtime Environment specification name
java.class.version Java class format version number
java.class.path Java class path
java.ext.dirs Path of extension directory or directories
os.name Operating system name
os.arch Operating system architecture
os.version Operating system version
file.separator File separator ("/" on UNIX)
path.separator Path separator (":" on UNIX)
line.separator Line separator ("\n" on UNIX)
user.name User's account name
user.home User's home directory
user.dir User's current working directory

static String getProperty(String key)
static String getProperty(String key)

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 70

Example 3-10: Write a Java program that reads an ASCII digit from keyboard

and display a number sequence: 1, 2.. up to the value of the entered number.

Solution:
Java classes and methods that under our consideration:

Read keyboard input:

 System.out.println()

 System.out.print()

 JoptionPane.showInputDialog()

Display message and numbers

 JoptionPane.showMessageDialog()

 System.in.read()

Study the J2SE API we found the following information:

InputStream class

public abstract class InputStream extends Object
This abstract class is the superclass of all classes representing an input stream

of bytes. Applications that need to define a subclass of InputStream must always

provide a method that returns the next byte of input.

// Return the number of bytes that can be read from the input stream
int available()

// Close the input stream and return all the resources associated with this stream
void close()

// Read the next byte of data from the input stream
read()

// Read a number of bytes from input stream and store them in the array
int read(byte[] b)

// Read up to a number of bytes as specified from input stream and store them in
the array
int read(byte[] b, int offset, int length)

// ReadAChar.java
//
// Running Results:

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 71

// E:\LinJavaExs\3_ObjClass>java ReadAChar
// Enter a number in the range:0 - 9:
// 9
// 1 2 3 4 5 6 7 8 9
public class ReadAChar
 {
 public static void main (String args[])
 {
 char aChar = (char)-1;
 int loopCountInt;
 String loopCountStr;

 // Solution 1: Using dialog box to read keyboard input
 // loopCountStr = JOptionPane.showInputDialog("Enter a number in
 the range:0 - 9");
 // loopCountInt = Interger.parseInt(loopCountStr);

 // Solution 2: Using Console I/O to read keyboard input
 System.out.println("Enter a number in the range:0 - 9: ");
 try
 {
 aChar = (char)System.in.read();
 }
 catch (Exception e)
 {
 System.out.println("Error: " + e.toString());
 }
 loopCountInt = Character.digit(aChar, 10);
 if ((loopCountInt > 0) && (loopCountInt < 10))
 {
 for (int n = 1; n <= loopCountInt; n++)
 {
 System.out.print(n);
 System.out.print("\t");
 }
 }
 else
 System.out.println("The number was out of the range: 0 - 9!");
 }
}

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 72

Example 3-11: This Java application examines the system memory information.

The instance of the class Runtime allows a Java application to interface with the

run time environment. Some useful methods of an Runtime object are

long freeMemory() // Return the amount of free memory in the system

long totalMemory() // Returns the total amount of memory in the Java Virtual

Machine.

/* AvaiMemory.java
 *
 *public class Runtime extends Object

 */
import javax.swing.JOptionPane;
import java.util.*;
import java.lang.*;
public class AvaiMemory
 {
 public static void main (String args[])
 {
 Runtime runtime = Runtime.getRuntime();
 long freeMem = runtime.freeMemory() / 1024;
 long totalMem = runtime.totalMemory() / 1024;
 JOptionPane.showMessageDialog(null, freeMem + "KB", "Free memory",
 JOptionPane.PLAIN_MESSAGE);
 JOptionPane.showMessageDialog(null, totalMem + "KB", "Total Memory",
 JOptionPane.PLAIN_MESSAGE);
 }
}

 Paul I. Lin

Chapter 3 Java Object-Oriented Programming and Enterprise Applications 73

Some light-weight GUI components defined in javax.swing.* and java.awt.*
packages

• public class JLabel extends Jcomponents implements SwingConstants,
Accessible

• public class JTextField extends JtextComponents implements

SwingConstants

 addActionListener()
 setEditable()

• public class JButton extends AbstractButton implements Accessible

 addActionListener()

• public class Container extends Component
 // A generic Abstract Window Toolkit (AWT) container object that can
 // contain other AWT components
 // Some methods:
 Container c = getContentPane();
 c.setLayout() = (new FlowLayout()); // Set the Layout Manager for this
 // container
 c.add(minuteLabel)
 c.add(minuteField)

• public class FlowLayout extends Objects implements LayoutManager,
Serializable

 // Constructor: FlowLayout()
A flow layout arranges components in a left-to-right flow, much like lines of text in
a paragraph. Flow layouts are typically used to arrange buttons in a panel. It will
arrange buttons left to right until no more buttons fit on the same line. Each line is
centered.

 Paul I. Lin

