

UNIT 1____________________________________

BASIC CONCEPTS

 OF

 OBJECT-ORIENTED PROGRAMMING

 AND

SYSTEMS

�

OUTLINE

1-1 The Challenge of Software Development

1-2 Software Construction and Software Engineering

1-3 Basic Concept of Object-Oriented Programming

1-4 Object-Oriented Software Development

1-5 Issues on Software Reuse

1-6 New Methodology and Tools

�1-1 The Challenge of Software Development

Emerging technologies: Windows and Client/Server Applications, DBMS to include OOP-type systems, Distributed processing including communications and networking, etc.,

 �

�

Manage Complexity

Meet user needs: Responsive

Deliver on Time: keep timelines, delivered with promised capability (not less-than)

Robust code: highest reliability, minimized the failure rate

Produce Quality Software

Build Maintainable Code

Portability

Minimize the rising software cost

Efficiency

 �

�1-2 Software Engineering and Software Construction

1-2-1 Software Engineering

System

Any collection of interacting elements for which there are cause-and-effect relationships among subsystems

A set of components working together to achieve some common purpose of objective

Software System

Software Engineering

Provide a consistent, life-cycle approach to the creation of software systems

Software engineering principles:

Abstraction and Information hiding

Modularity and Localization

Uniformity, Completeness, and Confirmability

Software Design Methodologies

Top-down structures design

Data structure design

Decomposition Criterion

Object-oriented design

Problem definition

Object Analysis

Object Design

�Software Requirement engineering

Problem domain

Constraints (boundaries for approximation and exactness)

Quality consideration

Physical limitation and equipment capacities

Safety

Application domain analysis

Needs elicitation

Information organization

Other

Specification of external behavior

Behavioral requirements

Non-behavioral requirements

Requirement evolution and maintenance

Other

�1-2-2 Software Life-Cycle

Analysis

Market

Assessment of feasible software product (high-level design)

Software Requirements (in terms of functionality, capabilities, performance, user interface, inputs, and outputs)

Design

Task design (Product and component specifications)

Architecture Design – system design (hierarchy of software components, rules for selection, and interface between components)

Design (program interfaces, control flow, and logic)

Software Design

Hardware/Codesign (reducing time-to-market)

Implementation and Testing

Code/Test Software

Build/Test Hardware

Operation and Maintenance

�1-2-3 Software Development Cost

Size and complexity

Development Process Factors

Requirement management

Project planning

Product engineering

Capability and experience of the project team

Technology Adopted

Product Supporting Cost

Quality of product delivered

Software maintenance related factors

Overrun in terms of the development effort and schedule

Inaccurate Estimate

Inept Schedule

Failure to recognize plans and risks

�1-2-4 Current Productivity Enhancement Practice

Technical Micro-Level

 4GLs

 Code Reuse

 Packaged software

Technical Macro-Level

 CASE

 Open Systems (standard software)

 Object-Orientation

Managerial Micro-Level

 Contract Consultants

 End-User Computing

Outsourcing

Managerial Macro-Level

New Development Methods

Process Control

�1-3 Basic Concept of Object-Oriented Development

Object-Oriented (Object-Based) Programming Definition:

"Object-oriented programming is a method of implementation in which programs are organized as cooperative collections of objects, each of which represents an instance of some class, and whose classes are all members of hierarchy of classes united via inheritance relationship."(Object-Oriented Analysis and Design with Applications, by Grady Booch)

Organize software as a collection of classes/objects that incorporate both data structure (hierarchy of types and subtypes) and functions

Objects

An effective way to manage system complexity

providing data and program abstractions, and

Convenient way of modifying software

OOP Language supports the following properties:

Abstraction,

Encapsulation,

Hierarchy (Inheritance, and Polymorphism), and

Messages

Key components of OOP :

Class,

Object,

Method, and

Message

�1-3-1 Key Components of OOP

Class

A user defined type which collects a group of objects with similar properties (attributes), common behavior (functions), and common relationships to other objects in its name space (An extension of structure in C)

Classes are organized hierarchically with subclasses inheriting properties from their super classes

Objects

Each object is an instance of some class

Can include some variables with different types and a set of functions that defined to perform appropriate operations on objects

Should include the following properties:

- A clear boundary that defines the scope

- A well-defined interface

- Protected internal representation

Object provide services

Messages

Containing parameters to an object for modifying the contents of an object (Calling a function in C == Sending a message in C++)

Method

An implementation of an operation (function)

A method exists for every message defined for an object of any class

�1-3-2 Properties Supported by OOP Language

Abstraction

"The act or process of separating the inherent qualities or properties of something from the actual physical object or concept to which they belong."(The American Heritage Dictionary, Second College edition)

"Formation of an idea, as of the qualities of properties of a thing, by mental separation from particular instances or material objects."(Webster's New World Dictionary, Third College Edition)

Focuses on the outside view of an object and serves to separate an object's essential behavior from its implementation

In programming, Abstraction is the process of identifying common patterns that have systematic variation

Data abstractions

Abstract data types or user defined types; designed in a particular context, for a particular purpose

Functional abstractions (messages and method)

Class abstraction

Must be carefully designed when “reuse” is intended

An example:

Motor abstraction:

Visible elements: diameter, length, shaft (speed, diameter, torque, length)

�Encapsulation

A mechanism for information hiding

A class member that needs to be protected from "unauthorized access" or accident (private, public, protected)

Protects data from corruption by ensuring that it is uniformly treated within and across applications

OOP encapsulates data (attributes) and function (behavior) into packages called objects

An example:

Motor Encapsulation:

 commutator, brush, field coil, armature

Polymorphism

Can be described as that the same operation (method) may be apply to many different class objects

Function name overloading

Operator overloading

Virtual function and dynamic binding (late binding)

Inheritance

Derive a new type from an existing user-defined type

A specific class may be declared to be a subclass (or derived class) of another class (a base class)

Single inheritance and multiple inheritance

Define relationship among classes:

 “Is-A" relationship

An example:

DC Motor, DC Brushless Motor, Synch. Motor are derived from the MOTOR

1-3-3 Classes

A class description -- defines the characteristics of a group of objects with similar attributes, common behavior (operation), common relationships to other objets

Organized hierarchically -- with subclasses inheriting properties from their super classes

An object is an instance of a class

�SYMBOL 183 \f "Symbol" \s 10 \h�	Examples of classes

 - Person: age, owner, job; change_job()

 - Process: priority, owner, required_sources; wait()

 - File: fine_name, size_in_bytes, last_up_date; print()

 Traffic_Light {

 private:

 int Light_Color;

 int No_Car_Waiting;

 int Total_No_Car;

 public:

 void Change_Light(int);

 void On_Time(int);

 void Off_Time(int);

 int Faulty_Lights(void);

 int Error_Rate(void);

 ...

 };

Operations defined in this class:

 Change_Light(),

 On_Time(),

 Off_Time(),

 Faulty_Lights(),

 Error_Rate()

Traffic Light Objects:

�1-3-4 Object

What is an object?

A concept, abstraction, or things with crisp boundaries and meaning for the problem solving or simulation

Have states, behavior, and identity

Instances of classes

Examples of real-world objects:

 - Person objects: Jack, Paul, Jim

 - File objects: p1.cpp, p1.obj, p1.exe

 - procees_1000

Role of an object

 - Actor (active object), or

 - Server (never operates upon other object), or

 - Agent (both actor and server)

�1-3-5 Classes in C++

Class objects in C++:

 - Data abstraction and data hiding

 - Methods (functions)

 - Messages(parameters)

 - Constructors

 - Destructors

 - Members of a class (functions and data)

 private

 protected

 public

 - Friends

 - Overloading

 - Derived class

"class," a keyword for declaring an object class

A class is an extension of C's structure and is a user-defined type.

Decide which type you want; provide a full set of operations for each type

�SYMBOL 183 \f "Symbol" \s 10 \h�	Support for Data Abstraction

 - Initialization of and Cleanup of

 - Instance Class Objects(non-abstract)

 - Constructor

 - Destructor new, delete

 - Assignment function... operator"()

 - template ... A C++ keyword for specifying a family of related classes

 - Exception Handling ... throw, try, catch

 - Overloading operators

�SYMBOL 183 \f "Symbol" \s 10 \h�	Encapsulation

Data structure and member functions

C++ keywords:

 class, private, protected, public, friend

��SYMBOL 183 \f "Symbol" \s 10 \h�	Inheritance:

Hierarchy of classes

Derived class or subclass (single inheritance)

Multiple inheritance

�SYMBOL 183 \f "Symbol" \s 10 \h�	Polymorphism:

Virtual functions

Overload functions

C++ keywords: virtual

Multiple implementations: derived classes, virtual functions (many different implementations)

�1-4 Object-Oriented Software Development

1-4-1 Object-Oriented Development

A way of thinking about software development based on abstractions that exits in the real world

A conceptual process that encourages the software developers to work and think in terms of the application domain through most of software life cycle; not a programming technique

Main Goals: Shorten the time and the cost of development by using reusable software components (Rapid prototyping)

The essence of object-oriented development

Identification and organization of application-domain concepts

Not their final presentation in a programming language

Effectively address the details of data structures and functions

Possible benefits:

Clearly expressing concepts

Help to obtain better communication among specifiers, developers, and customers

�Five Attributes of a Complex system (page 12-13, BOOCH)

Hierarchy relations represent different levels of abstraction; each build on the other

Decomposable primitive components

Interaction among components: intra- and inter-linkages

A few different kind of subsystems in various combinations and arrangements

Evolved from simple systems that works

Example: Personal computer: CPU: Monitor: Keyboard: Disk Storage: RAM: ROM: Gates: etc.,

Some examples of Object-Oriented Software

 - Graphics user interfaces

 - CAD systems

 - Simulations

 - Control systems

 - Object-oriented database

�1-4-2 Microsoft’s Object-Orientation

“Microsoft and Object-Oriented Programming, “ Object Magazine, page 13-16, March/April 1992, By Bill Gates

Windows objects mapped well into object-oriented design

has-a-handle

with characteristics and behaviors

Graphically oriented user interface and applications

Objects that interact with each other: dialog boxes, menus, fonts, buttons, etc.,

Benefits: more sophisticated functionally with a more consistent interface

Sea of Objects

a writing object

a recall object

a drawing object, etc.,

�

Object Linking and Embedding (OLE)

Object orientation extends beyond the reuse

OLE is basically a specification for interface between objects

OLE uses “containment” which is a technique allowing one object to embody another and to expose any number of the contained objects interfaces as its own

OLE also provides the object-oriented virtual of polymorphism by allowing any object to support a given interface

Makes the graphical applications more easily integrated with each other on the same computer and across a variety of networks

By representing images, charts, tables, and entire documents as objects with standardized interfaces – allows applications from different vendors to exchange, incorporate, and process each other’s data

Drag-and-Drop capability

Offered by the Windows OS through a set of Windows Application Program Interfaces (APIs)

OLE Automation, one of the OLE controls, provides a mechanism for one program to control another by setting and reading properties on objects and by invoking method on them

The Importance of OOP Development Environments

C++ Minus Minus

C++

Maximum functionally under Windows

Reuse existing code

Fast, small code generation

�1-5 Issues on Software Reuse

Reuse as an Investment

Same cost and risks as the financial investment

Short-term and long-term views

An incentive with some saving of resources

Rewards: reduce design, coding, and testing cost

Individuals should be encouraged for taking responsibility for the reuse activity

Reuse

 - Within a project

 - Different projects

 - Entire organization

Elements of Reuse

codes, designs, scenarios, and documentation (page 277, Object-Oriented Analysis and Design by Grandy Booch)

Reuse codes

Must not tied to a large block of unnecessary code

Not all code can be reused

Via external codes: abstract data types, graphics packages, numerical analysis libraries

Via methods (functions): small, consistent, coherent

Using inheritance when a true super class/subclass relationship does exist

Reuse designs

Reuse scenarios, and

Reuse documentation

1-6 New Methodology and Tools

Expectation

Expect the individual and software team to

Increase Productivity

Alleviate Project Backlog

Some Examples

Structure Analysis and Design and Related CASE tools

Object-Oriented Technology and Related CASE tools

Overlooked Issues

Integrated Technical and Managerial

Project and Configuration Management

Characterization of Project Team

Process Control

Object-Oriented Languages

Eiffel

Small Talk

Common LISP Object System (CLOS)

Object Pascal

C++

Technology Migration

Bottom-up approach

Top-Down approach

�1-6-1 An Overview of Object-Oriented Methodology

Process and Methodology

�

�

Methodology (Object Modeling Technique)

Building a model of applications

Adding implementation details during the design phase

Using a graphical notation for representing object-oriented concepts

�

Needed Stages

Analysis

Problem statement

Build a analysis model of real-world situation; showing important properties

Precise abstraction of what the system must do; not how it will be done

Should not contain any implementation decisions

The output of the analysis:

Knowledge

Product specification (requirement documentation for software component)

Complete

Consistent (no contradictory)

Clear (can be understand intuitively)

Concise (compact)

Precise(unambiguous)

Implementation free

�

System Design

The Input to the system design process:

Requirement document for a product

The output includes:

An implementation of the product

Customer documentation

Design documentation

High-level decisions about the overall architecture

Organize the target system into subsystems

Build a design model

Characterizing performance

Select strategies

Tentative resource allocation

Example:

Window objects – move, erase fast; communication protocols; memory buffering strategy

�Object Design

Adds details to the design model .. based on the selected strategy

Representing data and behavior (algorithms) for class implementation

Example:

The Windows class operations are specified in terms of underlying hardware and operating systems

Implementation

Translate object classes and relationships into a particular programming language, database, or hardware implementation

Flexibility

Extensibility

�1-6-2 Tool Requirements and Support for C++ Development

Protect Investment in C and More Features

Supporting Features of OOD

Interactive Component Level Development

Unit Testing

Quality Automation and Reuse

Run Time Error Detection

Protect Investment in C and More Features

Support existing C codes

Code Reuse and Class Libraries (a collection of reusable components)

Code comprehension (visualization of classes and their interfaces)

Inheritance and class interface browsing

Supporting Features of OOD

Interactive Component Level Development

Working with classes and objects independent of any particular application program in which the components are to be used

�Unit Testing

Part of development cycle

Create classes and Objects, test incomplete program fragment

Locate problems earlier and fix defects

Reduce cost

Quality Automation and Reuse

An obstacle in the reuse – inadequate software quality

During testing phase and development: Tools should support automate the task of detecting and diagnosing errors

Run Time Error Detection

Memory corruption problems

Unsafe pointer operations

Checking the consistency of type operations

�1-6-3 Confusion During the Changes

Learning and Adapting brand new and unfamiliar methods -- manager and Staffs are right in the middle of impossible schedule

Instability and unease in transitions

A common progression in Adopting the Object-Oriented Technology – An Incremental Migration Path

What is this?

Why should we use?

Oh, I know about it.

Now, I really understand it.

Getting started

Concerns about the Object-Oriented Technology

Does it apply to my application, and will it work for my project?

Specification: What ? Look like?

Analysis model: What ?

Functionality: How ?

Design Descriptions: What?

Plans progress Verification and Validation: How to?

LIN OOAD 1-�PAGE�29�

Others

 Analysis

 Design

Programming

Object Concept

Domain Specifics:

