

UNIT 2____________________________________

Object Modeling

2-1 The Object Modeling Technique

2-2 Classes and Objects

2-3 Relationships Among Object Classes

2-4 Advanced Object Modeling

2-5 Dynamic Modeling

2-6 Functional Modeling

2-7 Conclusions

�
2-1 The Object Modeling Technique

What is a model?

A model of a system is an abstract representation

Used to express functional requirements of a system

Helps to perform the performance evaluation

Purposes of using Model

A description of an actual system in terms of

Equations -- mathematical model, mathematical description

Concepts

Allows testing a physical entity before building it

Communication with customer

Visualization

Reduction of complexity

�
Types of Object Model

Domain Model – can identify essential objects in the domain, and their static and dynamic relationships to one another

Logical or Conceptual Model:

Documentation of actual objects, design decisions, communication exchanges

Specification Object and agent classes

Physical model: defines implementation methods of input, output, relations

Data flow Model: I/O stream of data used in steps, substeps, and activities

Object Model: describing static structure; high-level, low-level

Dynamic model: describing temporal relationships

Functional model : describes computations and functional relationships among values

Integration model

�

An Object Model normally contains

classes

class categories

objects

operations

subsystems

modules

processors

devices, and

the relationships among them

Each of these model components possesses properties that identify, and characterize them

The Rose notation provides graphical icons to represent each kind of model component and relationship

A model also contains diagrams and specifications

Provide a means of visualizing and manipulating the model's components and their properties

�
Exercise 2-1

Which factors are important in deciding whether or not buy a PC for your company? For yourself?

Color of the PC

Cost

Operating system(s) and application software packages

System expansion and upgrading capability

Multimedia capability

Hard disk space

Main memory space(RAM)

Monitor

Networking capability

Name brand

Exercise 2-2

Personal computers (Intel 80x86-based) are used in the following locations with certain applications.

For each application, prepare a list of the PC characteristics that are relevant

Explain why each characteristics is important for the application.

In an engineering lab

In a library for student to access

in a campus computer room

Engineering design lab

Manufacturing floor

Secretary’s desks

Computer scientist’s office

Liberal arts professor’s office

Software developer’s office (for Windows-based applications)

Server

Imaging system

�
2-2 Classes and Objects

In Object-oriented design and programming, classes represent fundamental concepts of reality being modeled.

For example:

User-level concepts: cars and trucks

Generalizations : vehicles

Hardware resources: memory management class

System resources: input/output streams

Classes to implement other classes: lists, queues, stacks

Class Definition

Captures the common structure and common behavior of a set of objects

is an abstraction of real-world items

When these items exist in the real world, they are instances of the class, and referred to as objects

For each class that has significant event-ordered behavior, you can create a state diagram to describe this behavior.

�
Object classes (Classes)

A group of attributes (with certain constrain) and functions (behavior, operations)

Class versions

Passive classes (merely represent data stores)

Active classes (complex behavior, state transition diagram)

Grouping by functional purposes

Security category

Equipment

Real-time control

Drivers

Devices

System information

Database

Graphical user interface

Communications

Networking

Interface Management system(user, presentation, dialogue control, application interface)

Abstract object classes (base classes)

Grouping objects into classes… abstract a problem

Generalization

Store common definitions (class name, attribute names)

Store common operations (reuse codes)

Allowing several different implementations for a given type

�
Exercise 2-3

A PC-based security management system consists the following subsystems

Photo Imaging system

Ethernet card and driver

Database system (ACCESS)

Windows 95 operating system

Access control subsystem

Special printer or plotter

Prepare a list of top-level objects that you need for later object design.

�
2-3 Relationships Among Object Classes

Essential relationships:

Association

Inherits

Has

Uses

Class Diagrams

Provides logical views of the current models

Show the relationships between class categories and classes Icons representing class categories and classes

Types of Objects

Transient .. only exist for the duration of a program execution

Persistent objects

Static objects

An array of objects

A stack of objects

Root objects

Control objects

Graphics Objects

Composite objects – formed by combining or linking together a number of objects

Active objects – can initiate computation spontaneously, without being requested to do by a client

�
Object Class Diagrams

A formal graphics notation for modeling objects, classes, and their relationships

For abstract modeling and for design actual programs

Convention for organizing object models

Prefixes, suffixes, or a simple grammar

Clear and consistent naming convention to convey high-level structure for a model

�

�

����� has a

��������

�����

�����

�
Communicating Among Objects

Passing messages

Receiving messages

Queues

Translation

Dispatching

Client/Server

Object Table

Message Dispatching tables

 Handle Para1 Para2 Time Point Message

�

Linking Interface Components (Communication through message passing)

�

 Dialogue

 Control

 Application Program Interface�
The Rose method recommends use

Static and dynamic views of a logical model and

A physical model to capture the in-process products of object-oriented analysis and design

(Page 108, Booch) Relationships Among Classes

Most OOPs support the following relationships:

Association

Inheritance

Aggregation

Using

Instantiation

Metaclass

Association

A semantic connection

Reflexive association: have an association with itself, for example: a file directory

Bidirectional; can be implemented only on direction

Implemented as pointers

A line connects two class objects (Booch notation)

Cardinality:

one-to-one

one-to-many

many-to-many

�
An Example of Association Relationship (page 108, Booch)

Class "Product" denotes the product sold as part of a sale

Class "Sale" denotes the transaction which involves several product sold

Capture the relationships through object pointers (buried)

 �EMBED MSDraw * mergeformat���

Create Class Diagram Using Rational Tool

�

�
Inheritance

Generalization/specialization (is a) relationship

Derived class inherits the structures and behavior of its base classes

An arrow head points to the superclass (Booch notation)

Insect is a super class; Winged and Wingless insects are derived class

 �EMBED MSDraw * mergeformat���

�
Has Relationship

Whole/part relationship (aggregation)

Filled circle at the end denoting the aggregate (Booch notation)

 �EMBED MSDraw * mergeformat���

Using

Client/supplier relationship

An open circle at the end denoting the client (Booch notation)

Indicating that the client invokes operations of the supplier

 �EMBED MSDraw * mergeformat���

Example: Aggregation relationships (page 128 of Booch’s book)

class TemperatureController

{

public:

	TemperatureController(Location);

 ~TemperatureController();

 void process(const TemperatureRamp&);

 void schedule(const TemperatureRamp&) const;

private:

 Heater h;

}

Physical containment

Heater is part of TemperatureController

Life times of the objects: TemperatureController and Heater objects are created at the same time; and destroyed at the same time

By reference

 Heater *h;

 �

�
Example: Using relationships (page 130 of Booch’s book)

class TemperatureController

{

public:

	TemperatureController(Location);

 ~TemperatureController();

 void process(const TemperatureRamp&);

 Minute schedule(const TemperatureRamp&) const;

private:

 Heater h;

}

In the member function,

 void process(const TemperatureRamp&);

we see that 	TemperatureController class uses the service of the class TemperatureRamp

 �

�
Instantiation

Parameterized class (or Generic class) serves as a template for other classes

A parameterized class must be instantiated (fill in parameters) before objects can be created

The parameterized class and Instantiated class notations are

Class “template” in C++

 �EMBED MSDraw * mergeformat���

�
Example: Queues of integers, strings, records (structures)

 . A parameterized class in C++

 template <class Element> class Queue{};

 Queue <int> Int_Queue; // Queue objects

 Queue <DisplayElement *> Element_Queue

 �EMBED MSDraw * mergeformat���

�

Metaclass

A class whose instances are themselves classes

A class itself as an object that can be manipulated

In the C++, we use

 . Static declaration of a member object or member function

 - An example:

 class MeasuredData

 {

 static ID; // For generating distinc ID

 static new();

 }

�
(Page 97, Booch) Relationships Among Objects

Links

A physical or conceptual connection between objects

Denote a specific association (client-supplier)

Pass messages along the link paths (directed lines, unidirectional)

Example:

� EMBED Word.Picture.6 ���

The Objects in this example:

aController (the client)

a and b are two instances or objects (suppliers) of the class DisplayItem

aView

Operations: isUnder(), 	move()

Actor object: aController

Server object: aView

Agent object: a and b objects

Aggregation

Physical containment, “ part-whole ” or “ a-part-of ” relationship

Transtivity (class A is part of B, and class B is part of C)

Antisymetric

Collections – one class holds a group of classes;

Multilevel aggregation (Compounds) – a compound provides a hierarchical structure (abstraction and encapsulation of parts)

Methods of Microsoft OLE control and automation

Example:

 PC

Monitor

Keyboard

Mouse

Printer

System Box

 CPU

 RAM

 Video RAM

 etc

Example:

1. The “class” keyword is part of class definition in C++.

Document, paragraph, sentence

�
Exercise 2-4

Discuss what the following objects have in common.

A black and white scanner, a color scanner

Pentium 133 MHz PC, PC-486 55 MHz, Gateway 200 MHz PC

10-base T Ethernet card, 100 MHz Ethernet card

Windows 95 operating system, Windows 3.11, DOS 6.2

Exercise 2-5

Discuss the relationships for each case listed below:

Line, point (association)

USA, Indianapolis, Fort Wayne (association)

A networked computer, Window for error message(association: zero-many multiplicity)

A person, a company (association: A person works for a company; A company employs a person)

Employees, XYZ company (one-to-many)

network files, users (many-to-many; access permission, accessed by)

Main memory, RAM, ROM (aggregation)

Imaging system, personal computer, memory, network card, printer, CCD camera (aggregation)

�
2-4 Advanced Object Modeling

Aggregation Vs Association

Aggregation

“part of “

A special form of association, not an independent relationship

Modeled as an Aggregation ? or an Association? A kind of uncertainty?

Example: NBS Company – Division – Department; and its employees

�

 Works for

�
Aggregation Vs Generalization

Generalization

“a kind of “ or “is-a” relationship

Imply “or” relationship

Inheritance relationship

Aggregation
