UNIT 3 _______________________

Object-Oriented Development:

From Notation To Implementation

3-1 Notation

3-2 Specifications

3-3 Object-Oriented Analysis

3-4 Object-Oriented Design

3-5 Iterative Design

3-6 Versioning

3-7 Implementation

Appendix: Some Example Menus of Rose Object-Oriented Design CASE Tool

� 3-1 Notation

Popular ones

Booch Method (Grady Booch)

OMT (Object Modeling Technology) (James Rumbaugh)

Booch Notation for Class and Object Diagrams

Notes

 �

Class Icons

 �

Using Relationship

Classes contained in the client class category can inherit from, contain instances of, use

A client class accesses a value (constant or variable) defined in the supplier class

Operations of the client class invoke operations of the supplier class

A uses relationship is a solid line with an open circle at one end:

The circle end designates the client class.

�

�

Has Relationship

A “whole and part”, or “ownership” relationship between two classes.

An aggregation relationship -- to show that the aggregate object is physically constructed from other objects or that it logically contains another object

Has relationship is a solid line with a black circle at one end

The circle end designates the client class.

�

�Association

�Inheritance

Containment adornments

�� By reference

Pointer

Independent lifetimes

�� By value

Contains instances

Same or equal lifetimes

�Example 3-1: The class structure describes a Hydroponics Gardening System, on Page 181 of Booch’s book

EnvironmentalController (1) --- uses --- (n) Light

 			 --- uses –- (1) Cooler

	 		 --- uses –- (1) Heater

Actuator --- has --- Temperature

�

�

Class Category

Highest-level architecture

Clusters of highly related classes; partition the logical model of a system

global class category -- may be used by virtually every class (foundation classes)

“using” relationships

Class category is a rectangle:

When you name the class category, Rational Rose displays the name inside the icon.

 �

�Example 3-2: An example of creating Class Categories as shown on page 183 of Booch’s book. This example shows how to group highly related classes and place them in a class category.

��Class Utility

 �

Provide additional functions /subprograms for classes

Name a class that only provides static members and/or static member functions

A cloud with a gray shadow at the lower edge of the cloud

Example 3-3: An example of Class Utilities that holds non-member functions, as shown on page 186 of Booch’s book.

�

�Export Control

Example 3-4: An example of Export Control, as shown on page 188 of Booch’s book.

Multiple inheritance: GrainCrop: public Crop, protected FoodItem (an abstract class)

class Crop

 {

 public:

 char * scientificName;

 protected:

 int yield;

 private:

 int nutrientValue;

 };

Public access (the default)

 Protected access

((Private access

(((Implementation access

�

Properties

static – data member of function

virtual – shared base class

friend – class or function; grant rights to access nonpublic parts of other classes

Example 3-5: Specifying properties of classes (page 190, Booch’s book)

�

�Physical Containment

A constrained form of “has”, “owns”, or “whole/part” relationship

For code generation – call by value or call by reference

Example 3-6: Physical containment (page 191, Booch’s book)

Class CropHistory

By Value (equal lifetimes)

 --- has N instances of the class NutrientSchedule

	 --- has N instances of the class ClimateEvent

By Reference (Independent lifetime; pointer to one instance)

�

�Roles and Keys of Objects

Roles

Client/Supplier

Users

Contributors

Keys

An attribute whose value uniquely identifies a single target objects

Unique multiple keys

[… key]

Example 3-7: Roles and Keys (page 192, Booch’s book)

�

�Constraints

System in steady state (ignoring transitory circumstances)

Invariant of classes of relationships that must be preserved while the state of system is stable

Applying constraints

 {… Constraints }

Example 3-8: Constraints (page 193, Booch’s book)

Cardinality constraints

EnvironmentController class has { 0 .. 7} No more than 7 instances of this class of system

Time hysteresis constraints

Heater class may not restart sooner than 5 minutes

Association constraints

{uniquely indexed} … EnvironmentalController and Light

{Cooler isRunning XOR Heater isRuning} …. EnvironmentalController (Heater/Cooler

�

Attributes Associations and Notes

Modeling properties of associations

Apply to every diagram

Adding and connect insights information in the Notes about

Example 3-9: Attributed Associations and Notes (page 195, Booch’s book)

Crop and Nutrient classes:

Every Crop{ } depends upon N nutrients

Each Nutrient{ } class may be applied to N different Crops

many-to-many association

Two notes

Retrieve from nutrient database

Should select from a common set of schedule

�

�

State Diagrams (State Transition Diagrams)

Capture the dynamic behavior of individual classes or collaborations of classes.

Show the state space of a given class

The events that cause a transition from one state to another

The actions that result from a state change

Consists of

one start state,

one or more states,

one or more end states

Rose used the notation by Harel for state transition diagrams.

A single state diagram for each class in the model that possesses significant event-ordered behavior

A state specification -- the textual information and icons representing the state in the state diagram.

Graphical Notation

A state transition -- a line with an arrowhead pointing toward the next state

Event/Action

Naming -- label each state transition with the name of at least one event that causes the state transition.

�

�Example 3-10: EnvironmentalController State Transition Diagram (page 203, Booch’s book)

�

�State Diagram with Nested States

entry

exit

Example 3-11:

�

�

Processor and Devices

Processor -- shaded box

Device -- box

Connection – a type of hardware coupling between two devices

�

�3-2 Object-Oriented Software Development Life Cycle

Steps

Requirements and Specifications:

Analysis and Object Modeling –

 Object model, dynamic model, and functional model;

 Data dictionary (for each classes: meaning, attributes, association,

 operation)

Object Design

Implementation

Testing

Maintenance and Redesign

�

Development Life Cycle

Domain Partitioning

 Sub-domains

 Key classes

�

Problem Definition

….

….

��

�

��

��

�����

�Project Initiation

Reference

Sponsors

Project organization

Responsibilities

Plans

Control mechanism

Quality

Types of Problem Domains

User Interface domain – windows, displays, icons, mouse, keyboard, etc.,

Security system – electronics key, remote intelligent communications, card reader, monitoring system

Imaging system – Digital CCD camera, Photo ID, Imaging importing and merging, Photo import and export

Access control system - Bar code, magnetic strip and smart chip encoding

Manufacturing plant domain – tanks, values, pipes, etc.,

Requirements and Architecture

Nonfunctional and functional requirements

Technical architectures

Incremental planning

�3-3 Object-Oriented Analysis

Overview

�
�

�
�
								

�

								
Problem

�
�
								
Statement
				
		

�

�

�
�

�

								Object Model

						
		Dynamic Model

								
Functional Model

�
�

�

						 Design

Analysis Methods

Step 1: Identify Objects

Object modeling

Identifying conceptual entities – the objects – in the problem domain

Describe the object in details

Step 2: Lifecycles

State modeling – state transition diagram

Formalize the behavior of each object throughout its life cycle

Formalize the intercommunication between objects

Step 3: Processes

Functional modeling -- data flow diagram

Identify processes required in the application

Detailing the process required for each object

�

Object-Oriented Specifications

Nongraphical form textual specification

Complete definition of an entity in the notation: classes, association, operations, events

Common elements:

Name: identifier

Definition: text

Class Specifications

Responsibilities: text

Attributes: list of attributes

Operations: list of operations

Return class: 	reference to class

Arguments:	list of formal arguments

Qualification: text (static, virtual, pure virtual, const)

Export control: public | protected | private | implementation

Constraints: list of constraints

Parameterized class: list of formal or actual generic parameters

�3-3 Object-Oriented Design

Seven Concepts describe a object-oriented design space (Ch2. Booch)

Abstraction

Simplified description or specification of a system

Encapsulation

Help manage complexity by hiding inside view of our abstractions

Information hiding (details)

Modularity

Cluster or group related classes

Hierarchy

Ordering of abstractions

Aggregation -- “is a part of”

Inheritance – “is a kind of”

Typing

Rules for distinguish object types

Strong, weak, dynamic binding, polymorphism

Concurrency

Process abstraction and synchronization

Multitasking and thread of control

Active objects or passive objects

Persistence

Lifetime of objects

Transient, persistence

�Design Methods

Class Definition

Attributes of the object – instance data

Data accessing processes (on the DFD) – Methods

Inheritance Hierarchy

Is-a relationships on the object model

Internal Class Structure Design

Public operations

Private operations

Protected operations

Data coupling

Exception propagation and handling

Polymorphism

Interface Design

Design descriptions

Definition of the roles and their responsibilities of each class in the system

For each operation in terms of its preconditions and effects

Polymorphic interfaces between classes and their subclasses

Provide concrete implementation of state and operations

�Object Diagram Specifications

Objects and their relationship

Roles, keys, and Constraints

Visibility

Active

Dynamics specifications

states – for transition in between

state machine: reference to state machine

events – an interaction of an object with itself or other objects

Functional specifications

Persistence: 	 transient | persistent

Concurrency: 	 sequential | guarded | synchronous | active

Space Complexity: expression

Time Complexity: expression

�

Object Interface Design

�

Possible Clients

Graphic window

Different OS or hardware environments

Other

An object's interface

A public interface

Specifies how to manipulate the object (rules, constraints)

To protect its encapsulation

A small and well-defined set of operations to manipulate an object

Function's header (or prototype) describes the interface between objects

There should be no direct access to the state of an object from the outside (private, public, protected)

Conflicts between interface Flexibility and Compatibility

�Hydroponic Gardening System

Class Diagram

�

�

Object Message Diagram

Browse -(Scenario Diagram (Object Message Diagram �

�Visibility (page 214, Booch’s book)

Controlling and keep tracking how one object has visibility to another

Figure 5-28 (Page 214 of Booch’s book) is a refinement of Figure 5-26.

G

The supplier object is global to the client

The PlanMetrics{ } class utility is “global” to the declaration of the PlanAnalyst object 	

P

The supplier object is a parameter to some operation of the client

C:GrainCrop object is visible as a “parameter” to some analyst operation

F

The supplier object is a part of the client object

From the perspective of the GardeningPlan object, the C:GrainCrop object is visible as a “field” or a part of the plan aggregate object

L

The supplier object is “locally “ declared object in the scope of the object diagram

�

Interaction Diagram

�

�

3-5 Iterative Design

Seven-Step Analysis and Design Method

(Matthew Pittman, Lessons Learned in Managing Object-Oriented Development, IEEE Software, Jan. 1993, pp. 43-53)

Candidate class: Identify new classes

Attributes and behaviors: using feedback from the class-structure and class design steps

Class structure: identify the inheritance and aggregate relationship among classes

Object structure: show how functional requirements are satisfied through object interaction

Class design: define protocol and semantics of class attributes and behaviors

Process architecture

Reuse: consider using components from outside the system and identify potential components for exports

Helpful Techniques for Refining

Checklist: Identifying objects

Scenarios (behaviors)

Nouns and Verbs: provide clues about classification structure

Relationships: aggregation (compounds and collections), classification (abstraction)

Designing classes with unspecified number of methods (abstract descriptions to)

 1) avoid redundancy

Minimize unstable conditions that may be caused by “part-of” and “kind-of” relationships between classes

Object Access and Management

Sharing objects? controlled simultaneous multiuser access to objects

One copy or many copies?

Persistent objects – continue to exist after the application that created it has terminated

Object Interactions, adapters --- Standards?

OLE -- Object Linking and Embedding (1990, Microsoft)

OLE technology was designed for integrating multiple applications and information types within compound documents and in multimedia systems

OLE makes its possible for a document to contain linked, embedded, or packaged objects that were created and are still editable

Not for UNIX user yet

ORB – Object Request Broker (1991, Object Management Group of Framingham, MA)

For solving distributed computing problems

Not tied to any operating systems

� 3- 6 Versioning

Versioning Systems

Manage product change

Version control changes in two ways

Linear configuration

Preserve the states of products as they change (previous, current)

Series of sequential change

Branching configuration

Keep original intact, product support cooperative works or work groups

Many can work and create their own versions of product

Merge together to a final version of the original

�3-7 Implementation

Issue of Interoperability

Reuse

Migration

Extension

New development

Object Wrapper

Combining O-O Applications with Conventional Codes

Massive investment in Conventional Programs

Need to reuse all or part of the previous systems

Cost too much for redevelopment

Small steps migration; not enough development resources

Object wrappers -- help with reuse and migration and protect investment

Implementation

A private implementation used internally to implement behavior function specified by the public interface

Maintainable, reusable interface

C++ Interfaces

No direct support for the "interface definition" and "implementation module"

A single declaration for a class that acts as the interface between the users and implementers of the member functions

�Testing Object-Oriented Programs

Emphasis on design and programming areas

Overlooked testing

How do we know that a program perform according to its specification?

Testing a system ensure that a particular implementation of modification

Complete coverage testing?

All functions are called.

All data members are used, range constraints

Maintaining Object-Oriented Software

The principle of inheritance and polymorphism reduce development and maintenance programming

Maintenance requirements

Ease of change

In-depth understanding of the software’s structure and behavior

Separation of class specification from implementation

Class Specification in a header file

�Appendix:

Some Example Menus of Rose Object-Oriented Design CASE Tool

App 3-1

App 3-2

App 3-3

App 3-4

App 3-5

App 3-6

App 3-7

App 3-8

App 3-9

App 3-10

App 3-11

App 3-12

App 3-13

App 3-14

App 3-15

App 3-16

App 3-17

App 3-18

App 3-19

App 3-20

LIN OOAD 3-�PAGE�
20
�

Modeling

 Objects

 Functions

 Dynamics

Design

 Detail Class Design

 System Design

 Object Design

 Representation & Algorithms

Users

Developers

Managers

Generate

Requests

User

Interviews

Domain Knowledge

Real-world exp

Build Models

 Client

 Server

 I

 n

 t

 e

 r

 f

 a

 c

 e

