Design and Evaluation of Hybrid Wired and Wireless Sensor Networks with Cloud Services for Monitoring of Early-Stage Environmental Corrosion

December 14, 2014

Ву

Paul I-Hai Lin*, Max Yen*, Dong Chen*, MengWei Li*, Richard Lampo**, Michael McInerney**, and Jerry Ryan**

*College of Engineering, Technology, and Computer Science
Purdue University Fort Wayne Campus

**U.S. Army Construction Engineering Research Laboratory

Δf

2014 International Computer Symposium, at Tunghai University, Taichung City, Taipei Track WS14-1 Workshop on Information Technology Innovation, Industrial Application and Internet of Things

Topics of Discussion

- Introduction to Army CERL Sponsored "Micro/Nano Technology Sol-Gel Corrosion Sensor System – Corrosion Monitoring"
- 2. Sol-gel and Cylindrical Corrosion Sensors
- 3. Sensor Networks Technology: Wired and Wireless
- 4. The Corrosion Monitoring System with Wired Sensor Nodes
- Experimental Testing of Second Generation CMS with Hybrid Wired and Wireless Sensor Nodes
- 6. Summary and Future Work

Introduction

- The project: "Micro-Nano Technology Sol-Gel Corrosion Monitoring System," 2011-2014
 - Project sponsor: Army Construction Engineering Research Laboratory, IL: Richard Lampo and Michael McInerney, and Jerry Ryan
 - Project Team:
 - Max S. Yen, Paul I-Hai Lin and Dong Chen
 - Graduate Students: MengWei Li, Robert Tilbury, Muhammad Shoaib Mansur
 - Undergraduate EE Student: Steve Groff

3

2. Sol-Gel and Cylindrical Corrosion Sensors Cylindrical Corrosion Sensor: A Sol-Gel Corrosion Sensor (Capacitive Type) Sol-Gel Coating Conductive Tapes

3. Sensor Network Technology: Wired and Wireless

- Definition of Sensor Network
 - An infrastructure includes sensing, computing, and communication elements to provide the ability to instrument, observe and react to events and phenomena in a specific environment [1].
 - Communication Element: Wired/Wireless
- Physical Signal Sources
 - · Electromagnetic radiation signals: radio and light
 - Optical, acoustic, seismic, acceleration, strain, vibration signals
 - Chemical and biochemical signals
 - Environmental signals: light, temperature, humidity, barometric

3. Sensor Network: Wired and Wireless

- Wireless Sensor Network (WSN) Applications
 - Industrial Monitoring, Control, Automation;
 - Building Automation
 - Home Automation and Consumer Electronics
 - · Security and Military Sensing
 - Asset Tracking and Supply Chain Management
 - Intelligent Agriculture and Environmental Sensing
 - · Health and Medical Monitoring
 - Critical Infrastructure Monitoring, Protection and Security

7

3. Sensor Network: Wired and Wireless

- Wireless Sensor Network (WSN) Architecture
 - Application Dependent: network sensor nodes, gateway node, data sources and sinks
 - Network Topologies and Routing Algorithms
 - Single-hop vs. multi-hop networks
 - Mobility consideration
 - Network lifetime
 - Scalability
 - Protocols
 - Energy Efficiency and Management
 - · Network Management
 - Data Management
 - Security and Data Integrity

3. Sensor Network: Wired and Wireless

- Wireless Sensor Network (WSN) Architecture
 - · Network Topologies and Routing
 - Star Network: One master node, multiple slave nodes
 - One master node- synchronization and channel access
 - Multiple slave sensor nodes
 - Examples: Bluetooth, 802.11b "WiFi"
 - Ring and Tree Network
 - · Cellular and paging system
 - Base stations are connected using wired network
 - Ad Hoc Networks
 - Multiple-hops path relaying data from user-to-user to reach data receiver
 - May form clustered and overlay network
 - Mesh Network: Multi-hop, multi-path

3. Sensor Network: Wired and Wireless

- Sensor Node Platform Selection Criteria
 - · Hardware:
 - Software:
 - Programming Language Tools
 - · Industrial Standard
 - Protocols
 - Other Features

3. Sensor Network: Wired and Wireless Sensor Node Platforms Microcontroller: TI MSP430-based, Atmel ATmega, IntelPXA255, etc Memory: Program and Data Interface (USB/Serial/WiFi/Ethernet) ADC and Digital I/O Transceiver (802.15.4-compliant, others) XBee TI CC2420 Wireless Communication License-free frequencies 433, 868-915 MHz, and2.4 GHz

4.9 Deployment and Testing: Corrosion Sensors and Wired Sensor Network at RIA Bridge, IL

- Sensor #1 (coal tar epoxy) coated sol-gel sensor)
- Sensor # 2 (coal tar epoxy coated sol-gel sensor)
- Sensor #3 (sol-gel sensor)
- Sensor #4 (sol-gel sensor)
- Sensor #5 (stainless steel cylindrical sensor, coal-tar epoxy coated) Sensor #6 (A36 cylindrical sensor, coaltar epoxy coated)

4.9 Deployment and Testing:

Corrosion Sensors at RIA Bridge, IL

Sensor #1 (coal tar epoxy coated sol-gel sensor) at the lower car deck (31 inches above the deck, 2 ft above the car deck level, on the west side of the bridge)

Sensor # 2 (coal tar epoxy coated sol-gel sensor) at the top of bridge control room (mounted on the vertically – south side)

4.13 Corrosion Monitoring Sensor System

Server Scripts/Programs

- CMS sensor data polling program
 - Every 30 minute, read sensors capacitance/voltage value: S1,... S6
 - Add time stamps
 - Store sensor data S1, ... S6
- Sensor node control, data access
- Remote access to the CMS through a secured web client
 - Cloud storage service: DropBox
 - Cloud-based remote access LogMeIn

31

4.14 Sensor Data and Remote Data Collection

- a) Data Collection and Storage
 - Data saved (every 30 minutes) at the CMS system located at RIA bridge
- b) Cloud-based Remote Access: LogMeIn

c) Move data to Cloud-based Data Store: Drop Box

5. Second Generation CMS System:

Wired & Wireless Sensor Nodes and Networks

■ Experimental Testing of Four Wireless Sensor Nodes and Network

6. Summary and Future Work

- The star-based wired sensor network for Army Bridge's Corrosion Monitoring System deployed at RIA, IL has been running since May 2013
- Wires and wireless sensors version of the CMS has been discussed at CERL, IL on April 14, 2014
- Redesign new wireless sensor node which integrates the following modules and features (Luis Morale's Master of Science Directed Project, Spring 2014)
 - A new PCB board (surface mount)
 - · Analog Signal Processing Subsystem corrosion sensing
 - Xbee (Zigbee based transceiver with antenna)
 - Temperature, humidity, and barometric pressure sensing
 - · Adurino Fio versions 2 and 3

