TECH 646 Analysis of Research in Industry

 and Technology
Ch. 14 Sampling

Appendix 14a: Determining Sample Size
Lecture note based on the text book and supplemental
materials:
Cooper, D.R., \& Schindler, P.S., Business Research Methods (12 th edition), McGraw-Hill/ I rwin

Paul I-Hai Lin, Professor of ECET
http:/lwww.etcs.pfw.edu/~lin
A Core Course for M.S. In Technology
Purdue University Fort Wayne

Determining Sample Size Metro U. Dinning Club Study

Random Samples of Preferred Lunch Times

Increasing Precision

Reckucing the Standard
Deviation by 50\%

$$
\begin{array}{rll}
\sigma_{\pi}=\frac{s}{\sqrt{n}} & \sigma_{\bar{\pi}}=\frac{.74}{\sqrt{10}}=.234 & \sigma_{\pi}=\frac{.8}{\sqrt{25}}=.16 \\
& \sigma_{\bar{z}}=\frac{.37}{\sqrt{10}}=.117 & \sigma_{\bar{x}}=\frac{.8}{\sqrt{100}}=.08
\end{array}
$$

where
$\sigma_{\bar{\gamma}}=$ standard error of the mean
$s=$ standard deviation of the sample
$n=$ sample size

Increasing Precision

- Sample data (n1)
- Unbiased Estimator - the sample standard deviation from sample n :

$$
\sigma_{\bar{X}}=s / \sqrt{n}
$$

Where:
$\mathrm{s}=$ standard deviation of the sample n 1

$$
\begin{aligned}
& \mathrm{n} 1=10, \overline{X 1}=3.0, \mathrm{~s} 1=1.15 \\
& \sigma_{\bar{X}}=s / \sqrt{n}=1.15 / 10^{0.5}=0.36
\end{aligned}
$$

Increasing Precision

- μ - predicted to be 3.0 or 12:00 noon (the mean of n1) ± 0.36
- Would expect to find the true μ between 2.64 and 3.36 between 11.49 a.am. and 12:11 p.m.
- If 2 = 11:30 a.m. and $0.64=(19.2 \mathrm{~min}) ; 2.64=11: 49$ a.m.
- From Exhibit 141-1, we know that population average μ $=3.1$, or 12.03 p.m.; and have 68\% confidence in this estimate (\pm Z or 68% of the area under the normal curve, see next slide)

2.64		$\mu=3.1$		
$11: 49$		3.00		
a.m.			3.36	

Confidence Levels and the Normal Curve

I mprove confidence to 95\%: true mean increases to $\pm 0.7=0.36 \times(\pm 1.96)$ (from $2.64=>2.3 ; 3.36=>3.7$ OR from 11:39 a.m. to 12:21 p.m.

Standard Errors

Standard Error (Z score)	\% of Area	Approximate Degree of Confidence
1.00	68.27	68%
1.65	90.10	90%
1.96	95.00	95%
3.00	99.73	99%

Metro U. Dinning Club Study

 Central Limit Theorem

Central Limit Theorem

Part B		Distribution of means from repeated samples of a fixed size $(n=64)$ 68\% of the area
	$\begin{array}{llllll}x_{1} & x_{3} & \bar{x} & x_{4} & x_{2}\end{array}$	

Central Limit Theorem

Estimates of Dinning Visits

Confidence	z score	\% of Area	Interval Range (visits per month)
68%	1.00	68.27	$9.48-10.52$
90%	1.65	90.10	$9.14-10.86$
95%	1.96	95.00	$8.98-11.02$
99%	3.00	99.73	$8.44-11.56$

Calculating the Sample Size for Questions

 Involving Means1. The precision desired and how to quantify it: The confidence level we want with our estimate.

The size of the interval estimate.
2. The expected dispersion in the population for the investigative question used.
3. Whether a finite population adjustment is needed.

Metro U Sample Size for Means

Steps	Information
Desired confidence level	$95 \%(z=1.96)$
Size of the interval estimate	$\pm .5$ meals per month
Expected range in population	0 to 30 meals
Sample mean	10
Standard deviation Need for finite population adjustment	4.1
Standard error of the mean Sample size	No

Metro U Sample Size for Population

Steps	Information
Desired confidence level	$95 \%(z=1.96)$
Size of the interval estimate	$\pm .10(10 \%)$
Expected range in population Sample proportion with given attribute	0 to 100\%
Sample dispersion Finite population adjustment	$\mathrm{Pq}=.30(1-.30)=.21$
Standard error of the proportion	$.10 / 1.96=.051$
Sample size	$.21 /(.051)^{2}=81$

Appendix 14a: Key Terms

- Central limit theorem
- Confidence interval
- Confidence level
- Interval estimate
- Point estimate
- Proportion

