TECH 646 Analysis of Research in Industry and Technology PART IV

Analysis and Presentation of Data:

Data Presentation and Description; Exploring, Displaying, and Examining Data; Hypothesis Testing; Measures of Association; Multivariate Analysis; Presenting Insights and Findings

Ch. 17 Hypothesis Testing (1 of 2)

Lecture note based on the text book and supplemental materials:

Cooper, D.R., & Schindler, P.S., *Business Research Methods* (11th edition), 2011, McGraw-Hill/Irwin

Paul I-Hai Lin, Professor

<u>http://www.etcs.pfw.edu/~lin</u> A Core Course for M.S. iIn Technology Program Purdue University Fort Wayne

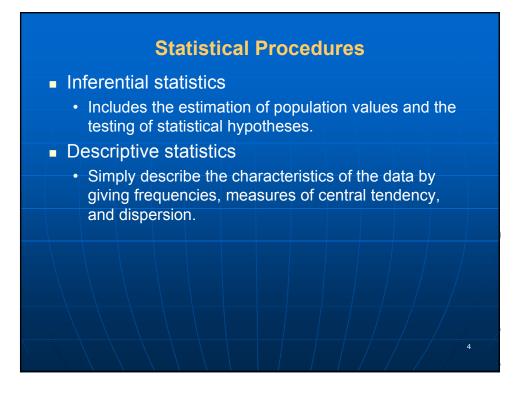
Exploring, Displaying, and Examining Data

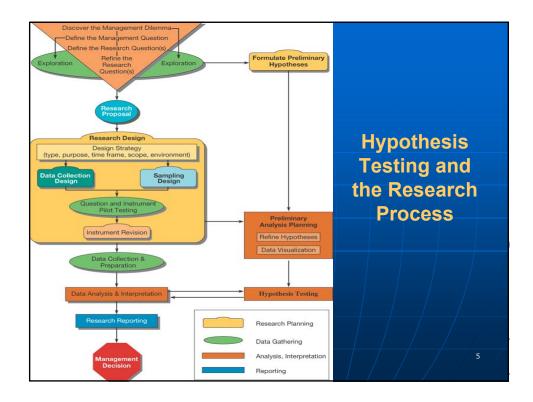
Learning Objectives ... Understand

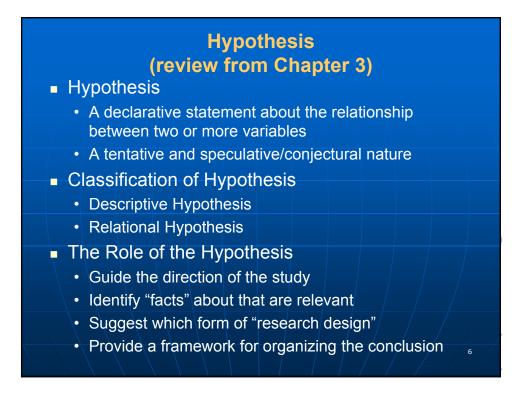
- The nature and logic of hypothesis testing.
- A statistically significant difference.
- The six-step hypothesis testing procedure.
- The difference between parametric and nonparametric tests and when to use each.
- The factors that influence the selection of an appropriate test of statistical significance.
- How to interpret the various test statistics.

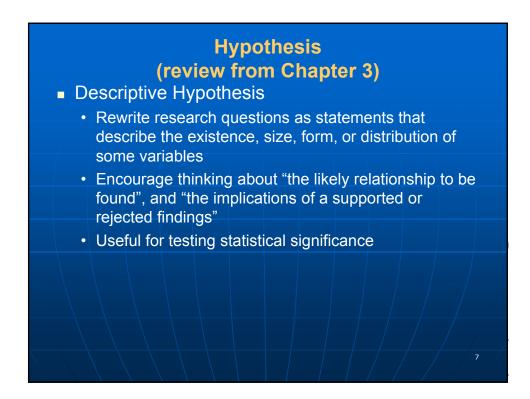
Inductive and Deductive Reasoning

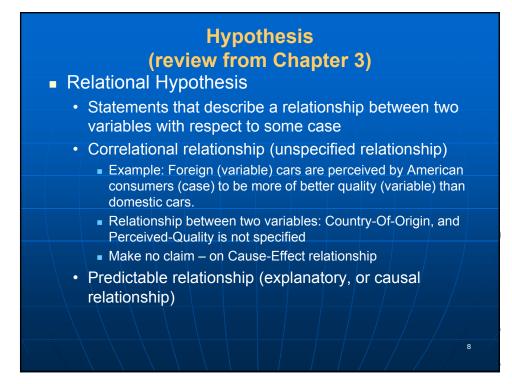
- Inductive Reasoning
 - From specific facts to general, but tentative, conclusions.
 - Using probability estimates, we can qualify our results and state the degree of confidence.
 - Statistical inference an application of inductive reasoning
 - Allows us to reason from evidence found in the sample to conclusions we wish to make about the population.
- Deductive Reasoning
 - Conclusion must necessarily follow from the premises given.

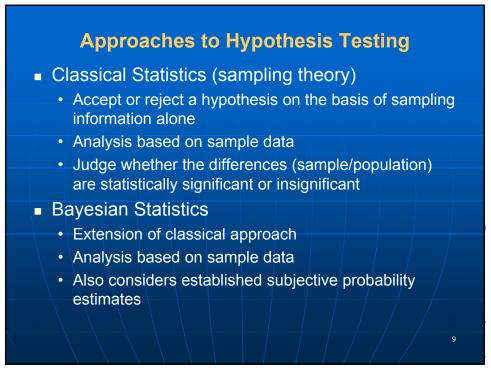


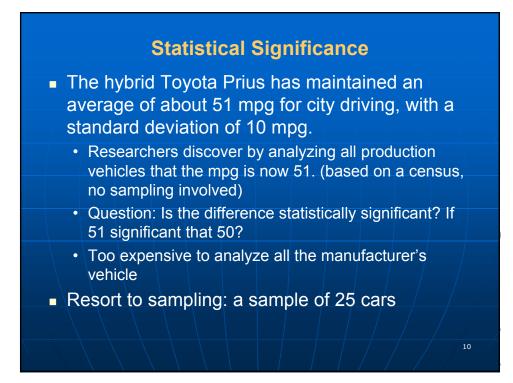


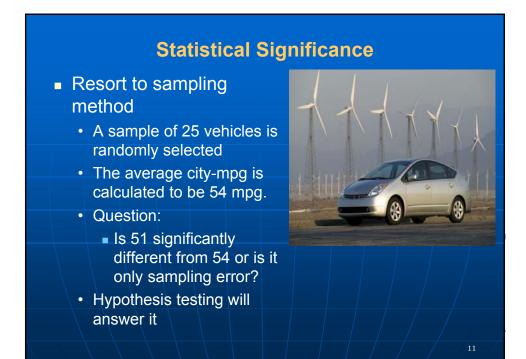




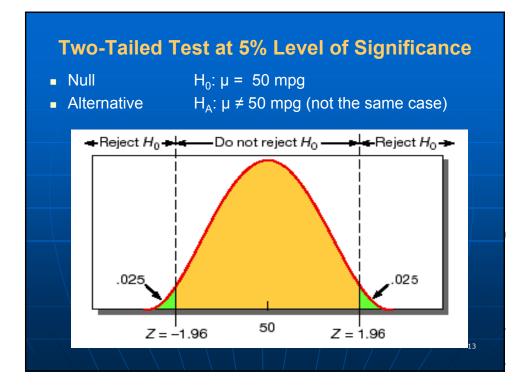


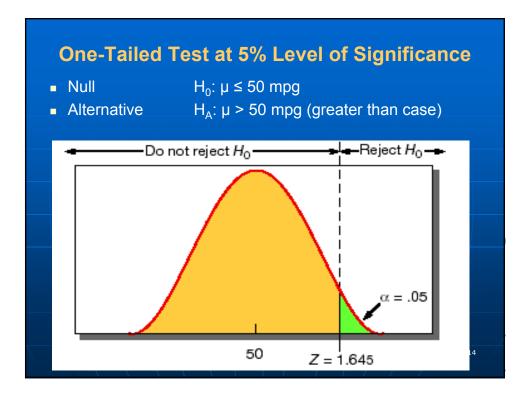


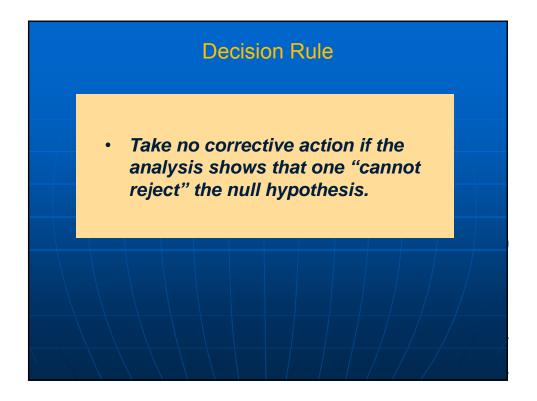


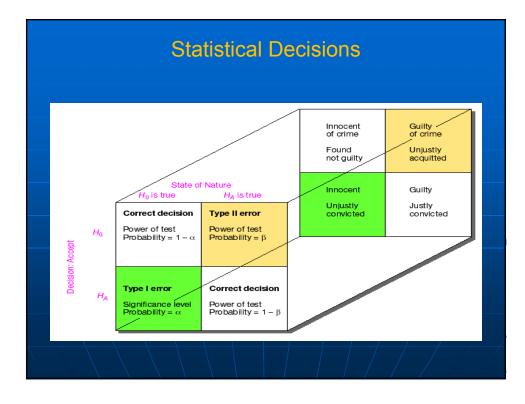


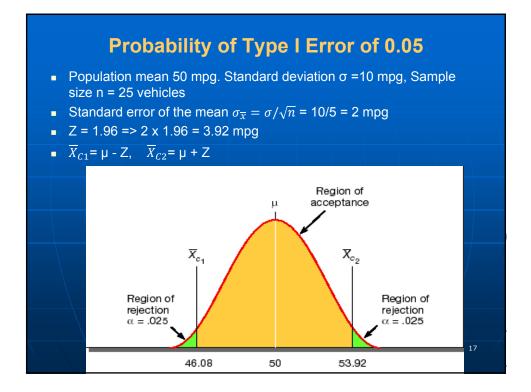
Types of Hypotheses	
 Null Hypothesis A statement - no difference	• Null
exists between the	• $H_0: \mu = 50 \text{ mpg}$
parameter and the statistics	• $H_0: \mu \le 50 \text{ mpg}$
being compared Toyota Prius (null	• $H_0: \mu \ge 50 \text{ mpg}$
hypothesis: the population	• Alternate
parameter of 50 mpg has	• $H_A: \mu \ne 50 \text{ mpg}$
not changed) Alternative Hypothesis A logical opposite of the	• $H_A: \mu > 50 \text{ mpg}$
null hypothesis	• $H_A: \mu < 50 \text{ mpg}$

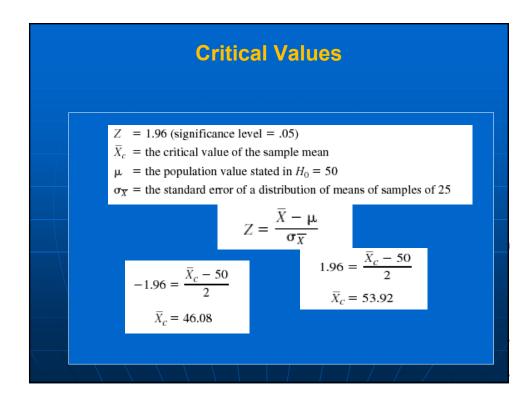


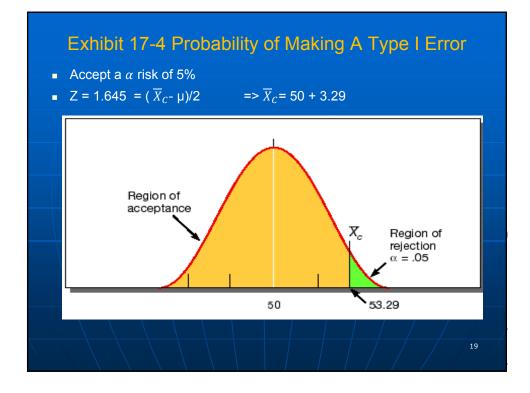


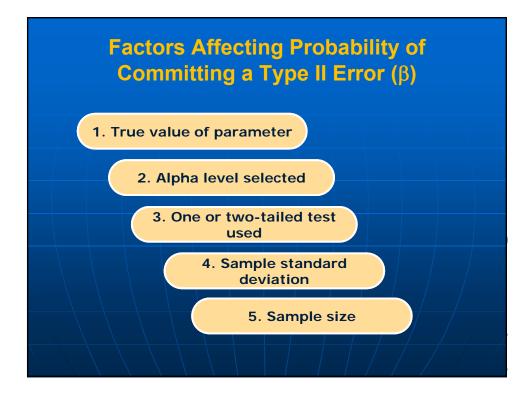


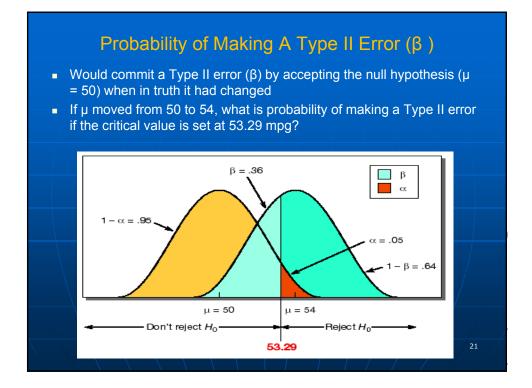




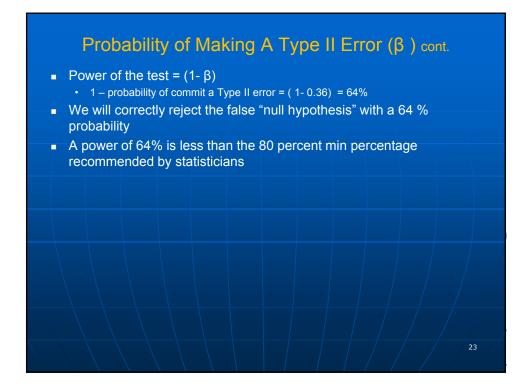




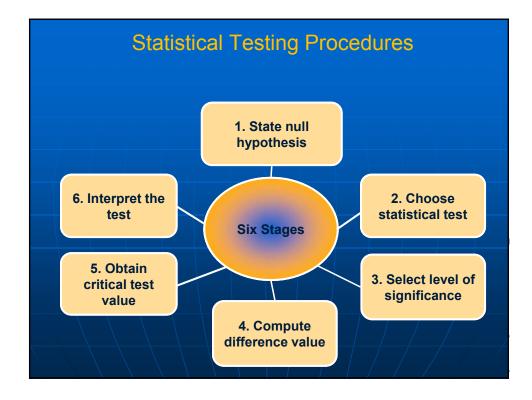




Probability of Making A Type II Error (β) cont. • Would commit a Type II error (β) by accepting the null hypothesis ($\mu = 50$) when in truth it had changed • If μ is actually moved from 50 to 54, what is probability of making a Type II error if the critical value is set at 53.29 mpg? • P(A₂)S₁ = $\alpha = 0.05$ (assume a one-tailed alternative hypothesis) • P(A₁)S₂ = β = ? $\sigma_{\overline{x}} = \sigma/\sqrt{\overline{n}} = 10/5 = 2 \text{ mpg}$ $Z = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}} = (53.29 - 54)/2 = -0.355$ Use Exhibit D-1 (Areas of the Standard Normal Distribution) Interpolate between 0.35 and 0.36 Z scores to find 0.355Z score. The area between the mean and Z is 0.1387. β is the tail area, or the area below the Z. $\beta = 0.5 - 0.1387 = 0.36$ (There is a 36% probability of a Type II error if the μ is 54)



How to Reduce Type II Error
(Increase power of test)
 Shift the Critical Value Closer to the Original µ
$Z = (\overline{X}_C - \mu) / \sigma_{\overline{X}}$
 Increase Sample Size (from 25 to 100)
$\sigma_{\overline{x}} = \sigma / \sqrt{n} = 10/10 = 1$
Z = $(\overline{X}_{c} - \mu)/\sigma_{\overline{X}} = (53.9 - 54)/1 = -0.71$
$\beta = 0.5 - 0.2612 = 0.24$ (reduce type II error to 24%, power of
test 76% < 80%) ■ Improve both ∝ and β errors simultaneously
24



Probability Value (p values)
 Interpretation the Test
Method 1:
The conclusion is stated in terms of "Rejecting or Not Rejecting" the null hypothesis based on a reject region
selected before the test is conducted.
Method 2:
 Reports the extent to which the test statistics disagree with the null hypothesis.
 Most statistical programs report the results of statistical tests as "probability value" or p-values.
 Given that the null hypothesis is true, the p-value is the probability of observing a sample value as extreme as, or more extreme than the value actually observed.
26

Probability Value (p values)

Interpretation the Test

- Method 2:
 - This area represents the probability of a Type I error that must be assumed if the null hypothesis is rejected.
 - The p-value is compared to the significance level (α), and on this basis the null hypothesis is rejected or rejected.
 - If p-value < α "Reject the Null"
 - If p-value > α "Don't Reject the Null"

Probability Value (p values) - Exhibit 17-4

- Based on σ =10, n = 25 , 5% of risk, we compute the critical value $\bar{\mathit{X}}$ = 53.29

 $\sigma_{\overline{x}} = \sigma / \sqrt{n}$ = 10/5 = 2 mpg

$$Z = 1.96 = \frac{X-\mu}{\sigma} = (\overline{X_c} - 50)/2$$

 $\overline{X_c} = 53.92$

- Suppose the sample mean equals 55. Is there enough evidence to reject the null hypothesis?
 - If p-value < 0.05, the Null Hypothesis will be rejected

$$Z = 2.5 <= \frac{\bar{X} - \mu}{\sigma_{\overline{X}}} = (55 - 50)/2$$

- The p-value is computed using the standard normal table:
 - The area between the mean and a Z value of 2.5 is 0.4938.
 - One-sided test: the p value is the area above the Z value.
 - The probability of observing a Z value at least as large as 2.5 is only 0.0062 or (0.5 – 0.4938) if the null hypothesis is true.

