

Learning Objectives

Understand . . .

- How correlation analysis may be applied to study relationships between two or more variables
- The uses, requirements, and interpretation of the product moment correlation coefficient.
- How predictions are made with regression analysis using the method of least squares to minimize errors in drawing a line of best fit.

Learning Objectives

Understand . . .

- How to test regression models for linearity and whether the equation is effective in fitting the data.
- Nonparametric measures of association and the alternatives they offer when key assumptions and requirements for parametric techniques cannot be met.

<section-header><section-header><text><text><text>

PulsePoint: Research Revelation

The percent of students using a credit card for college costs due to convenience.

Measures of Association: Interval/Ratio Data

Pearson correlation coefficient	For continuous linearly related variables
Correlation ratio (eta)	For nonlinear data or relating a main effect to a continuous dependent variable
Biserial	One continuous and one dichotomous variable with an underlying normal distribution
Partial correlation	Three variables; relating two with the third's effect taken out
Multiple correlation	Three variables; relating one variable with two others
Bivariate linear regression	Predicting one variable from another's scores

Measures of Association: Ordinal Data

Business Research Methods

Business Research Methods

Based on concordant-discordant pairs; proportional reduction in error (PRE) interpretation
P-Q based; adjustment for tied ranks
P-Q based; adjustment for table dimensions
P-Q based; asymmetrical extension of gamma
Product moment correlation for ranked data

Measures of Association: Nominal Data

Phi	Chi-square based for 2*2 tables			
Cramer's V	CS based; adjustment when one table dimension >2			
Contingency coefficient C	CS based; flexible data and distribution assumptions			
Lambda	PRE based interpretation			
Goodman & Kruskal's tau	PRE based with table marginals emphasis			
Uncertainty coefficient	Useful for multidimensional tables			
Карра	Agreement measure			

Researchers Search for Insights

Burke, one of the world's leading research companies, claims researchers add the most value to a project when they look beyond the raw numbers to the shades of gray...what the data really mean.

Which date gives amoves in thick and white, if the individual of the gray waves that gives you for being present Barker adventuals the manacer of revents. In model in anothering principation and parked by surging terms instances. Unless the source of neural models can be an important on a parket by surging the individual instance of an observations. In worth the emission is you do also the bark burges the present individual instances on call 100.005.32% of fact most is the present individual instances on call 100.005.32% of fact most is the present individual instances of the present insta

Pearson's Product Moment Correlation *r*

Is there a relationship between X and Y?

What is the magnitude of the relationship?

What is the direction of the relationship?

Business Research Method

Interpretation of Coefficients

A coefficient is not remarkable simply because it is statistically significant!

It must be practically meaningful.

Concept Application

X Average Temperature (Celsius)	Y Price per Case (FF)			
12	2,000			
16	3,000			
20	4,000			
24	5,000			
Mean =18	Mean = 3,500			

Business Research Methods

Plot of Standardized Residuals

18-25

Testing Goodness of Fit

Y is completely unrelated to X and no systematic pattern is evident

There are constant values of Y for every value of X

The data are related but represented by a nonlinear function

	ANOVA Summa	ary Table: Test of Reg	ression Model	
Source	Degrees of Freedom	Sum of Squares	Mean Square	F Ratio
Regression	1	9,287,143.11	9,287,143.11	32.02
Residual (error)	8	2,320,368.49	290,046.06	
Total		11,607,511.60		
			Significan	ce of <i>F</i> = .000

Chi-Square Based Measures

	Count	Yes	No	Row Total	
Direct Mail	Yes	21	10	31	
Direct Mair	No	13	22	35	
	Column Total	34	32	66	
Chi-Square	Value		d.f.		Significance
Pearson	6.16257		1		.01305
Continuity correction	4.99836		1		.02537
Minimal expected frequency 15.030					
Statistic	L	'alue			Approximate Significance
Phi	.3	0557			.01305
Cramer's V		0557 9223			.01305 [*] .01305 [*]

Calculation of Concordant (*P*), Discorda (*Q*), Tied (*Tx,Ty*), and Total Paired Observations: KeyDesign Example

Business Research Methods

KDL Data for Spearman's Rho

Business Research Method

	Rank By			
Applicant	Panel x	Psychologist y	d	d²
1	3.5	6.0	-2.5	6.25
2	10.0	5.0	5.0	25.00
3	6.5	8.0	-1.5	2.52
4	2.0	1.5	.05	0.25
5	1.0	3.0	-2	4.00
6	9.0	7.0	2.0	4.00
7	3.5	1.5	2.0	4.00
8	6.5	9.0	-2.5	6.25
9	8.0	10.0	-2	4.00
10	5.0	4.0	1.0	_1.00_
				57.00

Key Terms

- Linearity
- Method of least squares
- Ordinal measures
- Gamma
- Somers's d
- Spearman's rho
- tau b
- tau c

- Pearson correlation coefficient
- Prediction and confidence bands
- Proportional reduction in error (PRE)
- Regression analysis
- Regression coefficients

18-3

