Chapter 18

Measures of Association

Learning Objectives

Understand . . .

- How correlation analysis may be applied to study relationships between two or more variables
- The uses, requirements, and interpretation of the product moment correlation coefficient.
- How predictions are made with regression analysis using the method of least squares to minimize errors in drawing a line of best fit.

Learning Objectives

Understand . . .

- How to test regression models for linearity and whether the equation is effective in fitting the data.
- Nonparametric measures of association and the alternatives they offer when key assumptions and requirements for parametric techniques cannot be met.

Invalid Assumptions

"The invalid assumption that correlation implies cause is probably among the two or three most serious and common errors of human reasoning."

Stephen Jay Gould paleontologist and science writer

PulsePoint: Research Revelation

The percent of students using a credit card for college costs due to convenience.

Measures of Association: Interval/Ratio Data

Business Research Methods

Pearson correlation coefficient	For continuous linearly related variables
Correlation ratio (eta)	For nonlinear data or relating a main effect to a continuous dependent variable
Biserial	One continuous and one dichotomous variable with an underlying normal distribution
Partial correlation	Three variables; relating two with the third's effect taken out
Multiple correlation	Three variables; relating one variable with two others
Bivariate linear regression	Predicting one variable from another's scores

Measures of Association:
 Ordinal Data

discordant

Measures of Association: Nomina
 Data

Phi	Chi-square based for 2*2 tables
Cramer's V	CS based; adjustment when one table dimension >2
Contingency coefficient C	CS based; flexible data and distribution assumptions
Lambda	PRE based interpretation
Goodman \& Kruskal's tau	PRE based with table marginals emphasis
Uncertainty coefficient	Useful for multidimensional tables
Kappa	Agreement measure

Researchers Search for Insights

Burke, one of the world's leading research companies, claims researchers add the most value to a project when they look beyond the raw numbers to the shades of gray...what the data really mean.

Pearson's Product Moment Correlation r

Is there a relationship between X and Y ?

What is the magnitude of the relationship?

What is the direction of the relationship?

Connections and Disconnections

"To truly understand consumers' motives and actions, you must determine relationships between what they think and feel and what they actually do."

David Singleton, vp of insights
Zyman Marketing Group

Scatterplots of Relationships

Scatterplots

Diagram of Common Variance

Interpretation of Correlations

X causes Y

Y causes X

> X and Y are activated by one or more other variables
X and Y influence each other reciprocally

Artifact Correlations

Interpretation of Coefficients

A coefficient is not remarkable simply because it is statistically significant!

It must be practically meaningful.

Examples of Different Slopes

Concept Application

X Average Temperature (Celsius)	Y Price per Case (FF)
12	2,000
16	3,000
20	4,000
24	5,000
Mean =18 Mean $=3,500$	

Plot of Wine Price by Average
 Temperature

Distribution of Y for Observation of X

Wine Price Study Example

Least Squares Line: Wine Price Study

Plot of Standardized Residuals

Prediction and Confidence Bands

Testing Goodness of Fit

Y is completely unrelated to X and no systematic pattern is evident

There are constant values of Y for every value of X

The data are related but represented by a nonlinear function

Components of Variation

Coefficient of Determination: r^{2}

Total proportion of variance in Y explained by X
Desired r^{2} : 80% or more

Chi-Square Based Measures

Proportional Reduction of

 Error Measures| What is your opinion about capping executives' salaries? | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Occupational Class | Cell
 Count
 Row | signation | Favor | Do Not Favor | Row Total | |
| | Man | | $\begin{aligned} & 1,1 \\ & 90 \\ & 82.0 \end{aligned}$ | $\begin{aligned} & 1,2 \\ & 20 \\ & 18.0 \end{aligned}$ | 110 | |
| | Whit | ollar | $\begin{aligned} & \hline 2.1 \\ & 60 \\ & 43.0 \end{aligned}$ | $\begin{aligned} & 2,2 \\ & 80 \\ & 57.0 \\ & \hline \end{aligned}$ | 140 | |
| | Blue collar | | $\begin{aligned} & \hline 3.1 \\ & 30 \\ & 20.0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 3,2 \\ & 120 \\ & 80.0 \end{aligned}$ | 150 | |
| | Column Total | | $\begin{gathered} 180 \\ 45.0 \% \end{gathered}$ | $\begin{aligned} & 220 \\ & 55.0 \% \end{aligned}$ | $\begin{aligned} & 400 . \\ & 100.0 \% \end{aligned}$ | |
| Chi-Square | Value | | | d.f. | | Significance |
| Pearson Likelihood ratio | | $\begin{array}{r} 98.386 \\ 104.965 \end{array}$ | | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | | $\begin{aligned} & .00000 \\ & .00000 \end{aligned}$ |
| Minimum expected frequency 49.500 | | | | | | |
| Statistic | | Value | ASEI | | | Approximate Significance |
| Lambda: | | | | | | |
| Symmetric | | . 30233 | . 03955 | 6.77 | | |
| | | . 24000 | . 03820 | 5.69 | | |
| With opinion dependent | | . 38889 | . 04555 | 7.08 | | |
| Goodman \& Kruskal tau: | | | | | | |
| With occupation dependent With opinion dependent | | . 11669 | . 02076 | | | .00000** |
| | | . 24597 | . 03979 | | | . $00000{ }^{\circ}$ |

Statistical Alternatives for Ordinal Measures

Calculation of Concordant (P), Discordant (Q), Tied (Tx,Ty), and Total Paired Observations: KeyDesign Example

KDL Data for Spearman's Rho

	Rank By			
	Panel x	Psychologist y	d	d^{2}
Applicant	3.5	6.0	-2.5	6.25
1	10.0	5.0	5.0	25.00
2	6.5	8.0	-1.5	2.52
3	2.0	1.5	.05	0.25
4	1.0	3.0	-2	4.00
5	9.0	7.0	2.0	4.00
6	3.5	1.5	2.0	4.00
7	6.5	9.0	-2.5	6.25
8	8.0	10.0	-2	4.00
9	5.0	4.0	1.0	$\frac{1.00}{57.00}$
10				

Key Terms

- Artifact correlations
- Bivariate correlation analysis
- Bivariate normal distribution
- Chi-square-based measures
- Contingency coefficient C
- Cramer's V
- Phi
- Coefficient of determination (r2)
- Concordant
- Correlation matrix
- Discordant
- Error term
- Goodness of fit
- lambda

Key Terms

- Linearity
- Method of least squares
- Ordinal measures
- Gamma
- Somers's d
- Spearman's rho
- tau b
- tau c
- Pearson correlation coefficient
- Prediction and confidence bands
- Proportional reduction in error (PRE)
- Regression analysis
- Regression coefficients

Key Terms

- Intercept
- Slope
- Residual
- Scatterplot
- Simple prediction
- tau

